The present article is concerned with the Lyapunov stability of stationary solutions to the Allen–Cahn equation with a strong irreversibility constraint, which was first intensively studied in [2] and can be reduced to an evolutionary variational inequality of obstacle type. As a feature of the obstacle problem, the set of stationary solutions always includes accumulation points, and hence, it is rather delicate to determine the stability of such non-isolated equilibria. Furthermore, the strongly irreversible Allen–Cahn equation can also be regarded as a (generalized) gradient flow; however, standard techniques for gradient flows such as linearization and Łojasiewicz–Simon gradient inequalities are not available for determining the stability of stationary solutions to the strongly irreversible Allen–Cahn equation due to the non-smooth nature of the obstacle problem.