We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Enhanced dietary Ca intake linearly increases intestinal Ca absorption in pigs, but not in broilers, suggesting potential differences in whole body Ca homeostasis. To determine the role of kidney in Ca homeostasis in these species, we varied in growing pigs in experiment (Exp) 1, the dietary Ca content 2·0 v. 9·6 g/kg and phytase 0 v. 500 FTU/kg, in broilers, in Exp 2 the dietary Ca/retainable P from 1·3 to 2·8 and phytase 0 v. 1000 FTU/kg, and in Exp 3 dietary Ca/P from 0·50 to 1·75. Increasing dietary Ca reduced renal mRNA expression of Ca-related transporters (TRPV5, TRPV6, CaBP-D28k and NCX1) and tight junctions (CLDN-12 and −16) in pigs, indicating Ca reabsorption was reduced to maintain Ca homeostasis. In broilers (Exp 2), high dietary Ca increased renal TRPV6, CaBP-D28k and CLDN-2 mRNA, indicating an increased capacity for Ca reabsorption. Moreover, the effect of dietary Ca was enhanced by inclusion of dietary phytase in pigs but reduced in broilers. Furthermore, increasing dietary Ca upregulated inorganic phosphate transporter 1 (PiT-1), while phytase downregulated xenotropic and polytropic retrovirus receptor 1 (XPR1) mRNA expression in pigs; in broilers, dietary Ca downregulated renal mRNA expression of Na-dependent phosphate transporter IIa (NaPi-IIa), PiT-1, PiT-2 and XPR1, while phytase downregulated NaPi-IIa but upregulated PiT-2 and XPR1 mRNA expression. In Exp 3, Ca/P effect on transporter mRNA expression was largely consistent with Exp 2. In conclusion of this study, together with previously measured data about Ca and P homeostasis, in pigs the kidneys play a more regulatory role in Ca homeostasis than in broilers where the intestine is more important for regulation.
Restriction of dietary carbohydrates, fat and/or protein is often used to reduce body weight and/or treat (metabolic) diseases. Since diet is a key modulator of the human gut microbiome, which plays an important role in health and disease, this review aims to provide an overview of current knowledge of the effects of macronutrient-restricted diets on gut microbial composition and metabolites. A structured search strategy was performed in several databases. After screening for inclusion and exclusion criteria, thirty-six articles could be included. Data are included in the results only when supported by at least three independent studies to enhance the reliability of our conclusions. Low-carbohydrate (<30 energy%) diets tended to induce a decrease in the relative abundance of several health-promoting bacteria, including Bifidobacterium, as well as a reduction in short-chain fatty acid (SCFA) levels in faeces. In contrast, low-fat diets (<30 energy%) increased alpha diversity, faecal SCFA levels and abundance of some beneficial bacteria, including Faecalibacterium prausnitzii. There were insufficient data to draw conclusions concerning the effects of low-protein (<10 energy%) diets on gut microbiota. Although the data of included studies unveil possible benefits of low-fat and potential drawbacks of low-carbohydrate diets for human gut microbiota, the diversity in study designs made it difficult to draw firm conclusions. Using a more uniform methodology in design, sample processing and sharing raw sequence data could foster our understanding of the effects of macronutrient restriction on gut microbiota composition and metabolic dynamics relevant to health. This systematic review was registered at https://www.crd.york.ac.uk/prospero as CRD42020156929.
The gut microbiome is the community of organisms that occupies the humangastrointestinal tract. The human microbiome consists of approximately 1014 microbes, including bacteria, bacteriophages, archaea, eukaryotic viruses, fungi, and protozoa. The microbiome is influenced by genetic and environmental factors, most clearly diet. Microbiome research is becoming increasingly robust as the microbiome becomes increasingly linked with various disease states and potential therapies. The majority of research to date has focused on exploring the role of microbiota and dysbiosis in various autoimmune disorders, but interest has grown in their interplay with chronic pain disorders. The microbiome has primarily been linked to human disorders through modulation of inflammatory pathways. Most studies have taken place in animal models, introducing the challenge of translating this research to human interventional models. Pre/probiotics, fermented foods, dietary fiber, NAIOSs, fecal transplants, and novel therapies have been proposed to treat dysbiosis. Further investigation of the link between the microbiome and nociception may help with diagnosis and management of conditions like OA, fibromyalgia, and neuropathic pain.
This study investigated the effects of Lacticaseibacillus rhamnosus HN001 supplementation on the architecture and gene expression in small intestinal tissues of piglets used as an animal model for infant humans. Twenty-four 10-d-old entire male piglets (4·3 (sd 0·59) kg body weight) were fed an infant formula (IF) (control) or IF supplemented with 1·3 × 105 (low dose) or 7·9 × 106 (high dose) colony-forming units HN001 per ml of reconstituted formula (n 8 piglets/treatment). After 24 d, piglets were euthanised. Samples were collected to analyse the histology and gene expression (RNAseq and qPCR) in the jejunal and ileal tissues, blood cytokine concentrations, and blood and faecal calprotectin concentrations. HN001 consumption altered (false discovery rate < 0·05) gene expression (RNAseq) in jejunal tissues but not in ileal tissues. The number of ileal goblet cells and crypt surface area increased quadratically (P < 0·05) as dietary HN001 levels increased, but no increase was observed in the jejunal tissues. Similarly, blood plasma concentrations of IL-10 and calprotectin increased linearly (P < 0·05) as dietary HN001 levels increased. In conclusion, supplementation of IF with HN001 affected the architecture and gene expression of small intestine tissue, blood cytokine concentration and frequencies, and blood calprotectin concentrations, indicating that HN001 modulated small intestinal tissue maturation and immunity in the piglet model.
This study evaluated the importance of a correction for amino acids (AA) released into the hindgut on a measure of AA absorption kinetics and tested whether AA absorption kinetics are related to the extent of AA absorption using the growing pig as a model for humans. Thirty-six nine-week-old pigs (22·3 kg) received a diet containing whey protein as the sole protein source for 8 d. Pigs received their last meal containing the indigestible marker titanium dioxide before being euthanised at 1, 2, 3, 4, 6 and 12 h post-feeding. The entire content of each gastrointestinal tract (GIT) region was collected to determine AA released into the hindgut, and the kinetics and extent of AA absorption (uncorrected and corrected for AA entering the hindgut). Amounts of AA released into the hindgut increased over time (e.g. 33 and 180 mg of Glu for 4 and 6 h post-feeding). The corrected apparent amount of each AA absorbed from the GIT lumen after 4 h post-feeding was generally lower (P ≤ 0·05) than the uncorrected counterpart. Differences in both the kinetics and extent of AA absorption were observed across AA. For example, the time to reach half of the apparent AA absorption (T50) was 1·5 and 3·4 h for Met and Arg, respectively, whereas their extent of apparent absorption was 93 and 73 %. Negative correlations between parameters related to kinetics and the extent of apparent absorption were observed (e.g. for T50 r = −0·81; P < 0·001). The kinetics of AA absorption is related to the extent of AA absorption.
Research on the gut microbiome has gained high popularity and almost every disease has meanwhile been linked to alterations in microbiome composition. Typically assessed via stool samples, the microbiome displays a huge diversity with a multitude of environmental parameters already identified as contributing to its character. Despite impressive scientific progress, normal microbiome diversity remains largely unexplained and it is tempting to speculate some of the yet unexplained variance is hidden in normal gut physiology. Although a few genome/phenome-wide associations studies have recently highlighted physiological parameters such as stool frequency,known as contributing to microbiome diversity, there is a large knowledge base from decades of basic research on gut functions that can be explored for possible links to stool features and microbiome characteristics. And, when extrapolating findings from faecal samples to the biology in the intestinal lumen or the mucosal microenvironment, gut anatomy and physiology features need to be considered. Similarly, differences in anatomy and physiology between rodents and humans need attention when discussing findings in animals in relation to human physiology and nutrition.
The enteric nervous system (ENS) is an autonomic nervous system in its own right. It can function independently of the central nervous system. The neurons of the ENS are located the ganglia of the myenteric or submucosal plexus and consist of intrinsic primary afferent neurons, interneurons and motor neurons innervating various effectors. The primary transmitter in most excitatory enteric neurons is acetylcholine. Inhibitory motor neurons use several cotransmitters. Afferent neurons, interneurons and motor neurons form reflex circuits that underlie the neural regulation of motility, secretion, reabsorption, local blood flow and in protective reactions of the gastrointestinal tract. Motility patterns are mainly directed by the myenteric plexus. The neural basis of peristalsis consists of the coordinated activation of ascending and descending reflex pathways. The circular muscles are additionally influenced by a descending inhibitory reflex pathways. Inhibitory and excitatory reflex circuits are organized and coordinated with pacemaker activity of the interstitial cells of Cajal (ICCs) to generate the different movement patterns. The networks of ICCs are also responsible for oral-aboral contraction. Neural regulation of fluid and electrolyte transport is controlled through the submucosal plexus. The brain modulates the functions of the ENS via the parasympathetic and sympathetic nervous systems.
Regulation of the cardiovascular system, the respiratory system and the gastrointestinal tract (GIT) is represented in the lower brain stem. These control systems require precise coordination and are closely integrated, which is reflected in the anatomy and physiology of the neural substrates of these control systems. Included in this integration are the final autonomic pathways, the enteric nervous system and the spinal autonomic circuits. The circuits in the medulla oblongata are under the control of the upper brain stem, hypothalamus and telencephalon. Neurons involved in regulation of arterial blood pressure and respiration are situated in rostrocaudally organized columns of neurons in the ventrolateral medulla (VLM). The rostral VLM is a sympathetic cardiovascular premotor nucleus mediating reflexes to sympathetic cardiovascular preganglionic neurons such as arterial baroreceptor, arterial chemoreceptor and other reflexes. The caudal raphe nuclei of the medulla oblongata are involved in thermoregulation and regulation of energy balance. The respiratory pattern in cardiovascular neurons is generated by the "common cardiorespiratory network" in the VLM. Neural control of the GIT by the lower brain stem is exerted by multiple reflex circuits consisting of vagal afferents from the GIT, neurons in the nucleus tractus solitarii and parasympathetic preganglionic neurons projecting to the GIT.
Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30·4 (sem 1·3) kg) received a low and high Ca content (2·0 and 9·6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 d. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal transient receptor potential vanilloid 5 (TRPV5) mRNA expression was decreased (32%) with phytase inclusion only, while colonic TRPV5 mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na–P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and CLDN-10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared with a Ca-deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.
The recent exponential increase in caesarean section (CS) rates in many countries including Ghana requires an understanding of the potential long-term consequences on child health. The present study investigated the relationship between CS delivery and risk of childhood overweight/obesity. A retrospective cohort study was conducted from October 2019 to March 2020 in Ghana. Using multi-stage sampling, 553 mother–child pairs aged 6–23 months were selected from ten health facilities during child welfare clinic (CWC) services. We assessed the association between delivery mode (caesarean v. vaginal) and subsequent body mass index for age (BMI/age Z-score) using hierarchical multivariable linear regression analysis. The prevalence of overweight/obesity (BMI/age Z-score > +2 sd) in children was 3⋅6 %. After adjusting for maternal gestational weight gain, macrosomia and child feeding practices, children who were born through CS had mean BAZ which was 0⋅105 standard units significantly higher than their colleagues who were delivered through normal vaginal [beta coefficient (β) 0⋅105, (95 % CI 0⋅03, 0⋅55)]. CS birth was also associated with 3⋅2 times higher odds of overweight/obesity than vaginal delivery (AOR 3⋅23; 95 % CI 1⋅14, 9⋅13). Consequently, CS delivery was associated positively with increased body mass (adiposity) in the study sample. The association between CS delivery and risk of childhood obesity was attenuated after adjusting for macrosomia. These results would be important for informing clinicians and expectant mothers in considering CS delivery.
Sixty growing male pigs were used to test the hypothesis that high dietary Ca content reduces P absorption to a greater extent in microbial phytase-supplemented diets via reducing inositol phosphate (IP) degradation and enhancing P precipitation. Pigs were equally allotted over diets with three Ca contents 2·0, 5·8 and 9·6 g/kg with or without microbial phytase (0 v. 500 FTU/kg) in a 2 × 3 factorial arrangement. Faeces and urine were collected at the end of the 21-d experimental period. Subsequently, pigs were euthanised and digesta quantitatively collected from different gastrointestinal tract (GIT) segments. Increasing dietary Ca content reduced apparent P digestibility in all GIT segments posterior to the stomach (P < 0·001), with greater effect in phytase-supplemented diets in the distal small intestine (Pinteraction = 0·007) and total tract (Pinteraction = 0·023). Nonetheless, increasing dietary Ca to 5·8 g/kg enhanced P retention, but only in phytase-supplemented diets. Ileal IP6 degradation increased with phytase (P < 0·001) but decreased with increasing dietary Ca content (P = 0·014). Proportion of IP esters in total IP (∑IP) indicated that IP6/∑IP was increased while IP4/∑IP and IP3/∑IP were reduced with increasing dietary Ca content and also with a greater impact in phytase-supplemented diets (Pinteraction = 0·025, 0·018 and 0·009, respectively). In all GIT segments, P solubility was increased with phytase (P < 0·001) and tended to be reduced with dietary Ca content (P < 0·096). Measurements in GIT segments showed that increasing dietary Ca content reduced apparent P digestibility via reducing IP degradation and enhancing P precipitation, with a greater impact in phytase-supplemented diets due to reduced IP degradation.
Colostrum quality is of paramount importance in the management of optimal ruminant growth and infectious disease prevention in early life. Live yeast supplementation effect during the last month of gestation was evaluated on ewes’ colostrum composition. Two groups of ewes (n = 14) carrying twin lambs were constituted and twins were separated into groups (mothered or artificially fed) 12 h after birth. Nutrient, oligosaccharides (OS), IgG and lactoferrin concentrations were measured over 72 h after lambing, and bacterial community was described in colostrum collected at parturition (T0). Immune passive transfer was evaluated through IgG measurement in lamb serum. In both groups, colostral nutrient, OS concentrations and IgG concentrations in colostrum and lamb serum decreased over time (P < 0⋅01), except for lactose, which slightly increased (P < 0⋅001), and lactoferrin, which remained stable. Bacterial population was stable over time with high relative abundances of Aerococcaceae, Corynebacteriaceae, Moraxellaceae and Staphylococcaceae in T0 colostrum. No effect of supplementation was observed in nutrient and lactoferrin concentrations. In supplemented ewes, the level of colostral IgG was higher at T0 and a higher level of serum IgG was observed in lambs born from supplemented mothers and artificially fed, while no effect of supplementation was observed in the mothered lamb groups. Using a metabolomic approach, we showed that supplementation affected OS composition with significantly higher levels of colostral Neu-5Gc compounds up to 5 h after birth. No effect of supplementation was observed on bacterial composition. Our data suggest that live yeast supplementation offsets the negative impact of early separation and incomplete colostrum feeding in neonate lambs.
This study characterised the in vitro ileal fermentability of different substrates in the growing pig, adopted as an animal model for the adult human, and compared in vitro ileal and caecal fermentation in the pig. Substrates (arabinogalactan (AG), cellulose, fructo-oligosaccharide (FOS), inulin, mucin, citrus pectin and resistant starch) were fermented in vitro (ileal 2 h and caecal 24 h) with an ileal or caecal inoculum prepared from ileal or caecal digesta collected from growing pigs (n 5) fed a human-type diet for 15 d. The organic matter (OM) fermentability and production of organic acids were determined. In general, there was considerable in vitro ileal fermentation of fibre, and the substrates differed (P < 0·001) for both in vitro ileal and caecal OM fermentability and for organic acid production. Pectin had the greatest in vitro ileal OM fermentability (26 %) followed by AG, FOS and resistant starch (15 % on average), and cellulose, inulin and mucin (3 % on average). The fermentation of FOS, inulin and mucin was greater for in vitro caecal fermentation compared with the ileal counterpart (P ≤ 0·05). In general, the organic acid production was higher for in vitro caecal fermentation (P ≤ 0·05). For instance, the in vitro ileal acetic acid production represented 4–46 % of in vitro caecal production. Energy from fibre fermentation of 0·6–11 kJ/g substrate fermented could be expected in the ileum of the pig. In conclusion, substrates are fermented in both the ileum and caecum. The degree of fermentation varies among substrates, especially for in vitro ileal fermentation.
An ever increasing number of drugs are known to cause gastrointestinal injury. The histological features are often non-specific and a single drug can induce many different patterns, necessitating close collaboration between pathologists and clinicians to reach a correct diagnosis. However, there may be some histological clues that are helpful in the diagnosis of drug-induced injury.
The assessment of gastrointestinal (GI) specimens from immunosuppressed patients can be challenging, particularly because of the increased likelihood of multiple diseases and of rarer diseases. This chapter documents and presents the wide range of luminal GI pathologies that can develop in the three main groups of immunosuppressed patients, i.e. HIV/AIDS patients, individuals with primary immunodeficiencies, and patients receiving iatrogenic immunosuppression. These GI pathologies include infections, neoplasms, drug-related injuries, and diseases that are more specific to certain groups of immunosuppressed patients such as graft-versus-host disease in bone marrow transplant recipients.
Many diseases that have a systemic distribution may involve the gastrointestinal (GI) tract and liver. Furthermore, diseases that usually manifest within one extra-gastrointestinal organ or system may also involve the GI tract, either directly or as a result of treatment for the extra-GI disease. This chapter focuses initially on five systemic diseases that can have GI manifestations: sarcoidosis, amyloidosis, mast cell diseases, IgG4-related disease, and Behçet’s disease, and then discusses diseases with cutaneous manifestations and their effect(s) on the GI tract. Systemic diseases may become manifest within the GI tract in the context of a known condition. When this occurs, the cause of the GI disease may be obvious. Alternatively, the GI tract features may represent the presenting phase of the disease, which could already be active but subclinical at other sites. The differential diagnosis of certain histopathological features associated with GI tract manifestations of systemic disease, e.g. granulomas, may be wide. Therefore, careful clinicopathological correlation is essential. Finally, treatments for some extra-GI conditions may cause GI-related side effects, e.g. methotrexate therapy for psoriasis.
We evaluated the differences between the supplementation of urea in rumen and/or abomasum on forage digestion, N metabolism and urea kinetics in cattle fed a low-quality tropical forage. Five Nellore heifers were fitted with rumen and abomasum fistulas and assigned to a Latin square design. The treatments were control, continuous infusion of urea in the abomasum (AC), continuous infusion of urea in the rumen, a pulse dose of urea in the rumen every 12 h (PR) and a combination of PR and AC. The control exhibited the lowest (P < 0·10) faecal and urinary N losses, which were, overall, increased by supplementation. The highest urinary N losses (P < 0·10) were observed when urea was either totally or partially supplied as a ruminal pulse dose. The rumen N balance was negative for the control and when urea was totally supplied in the abomasum. The greatest microbial N production (P < 0·10) was obtained when urea was partially or totally supplied in the abomasum. Urea supplementation increased (P < 0·10) the amount of urea recycled to the gastrointestinal tract and the amount of urea-N returned to the ornithine cycle. The greatest (P < 0·10) amounts of urea-N used for anabolism were observed when urea was totally and continuously infused in the abomasum. The continuous abomasal infusion also resulted in the highest (P < 0·10) assimilation of microbial N from recycling. The continuous releasing of urea throughout day either in the rumen or abomasum is able to improve N accretion in the animal body, despite mechanism responsible for that being different.
Alterations in the maternal environment may impact on the fetal development. The objective of this study was to investigate the gastrointestinal consequences of maternal hypothyroidism for the male offspring from Wistar rats. The pregnant rats were divided into three groups: control (C – received water), experimental 1 [E1 – received methimazole (MMI) solution] during gestation and lactation, and experimental 2 (E2 – received MMI solution) during gestation. Maternal parameters evaluated: free T3 and T4, bodyweight variation, and water/food intake. Offspring parameters evaluated: litter size, number of male/female, free T3 and T4, stomach area, gastric ulcer susceptibility, small intestine length and weight, small intestine and distal colon motility, the stomach and intestinal weight–body weight ratio (SW/BW–IW/BW), and the accumulation of intestinal fluid. Maternal T3 and T4 from E1 were decreased when compared to the other groups. There were no differences for maternal water/food intake and weight gain, litter size, and number of males and females. Regarding to offspring, free T3, SW/BW, IW/BW, and intestinal fluid accumulation were not different between the groups, but T4 was decreased in E1. However, 30-day-old pups from E1 and E2 were smaller with lower stomach and small intestine. Even more, E1 presented a lower ulcer index when compared to the C, while E2 had a higher distal colon transit. It can be concluded that maternal hypothyroidism impaired the total body development, as well as gastric and intestinal development, besides interfering with the susceptibility to the ulcer and intestinal transit of male offspring from Wistar rats.
Dietary fibre fermentation in humans and monogastric animals is considered to occur in the hindgut, but it may also occur in the lower small intestine. This study aimed to compare ileal and hindgut fermentation in the growing pig fed a human-type diet using a combined in vivo/in vitro methodology. Five pigs (23 (sd 1·6) kg body weight) were fed a human-type diet. On day 15, pigs were euthanised. Digesta from terminal jejunum and terminal ileum were collected as substrates for fermentation. Ileal and caecal digesta were collected for preparing microbial inocula. Terminal jejunal digesta were fermented in vitro with a pooled ileal digesta inoculum for 2 h, whereas terminal ileal digesta were fermented in vitro with a pooled caecal digesta inoculum for 24 h. The ileal organic matter fermentability (28 %) was not different from hindgut fermentation (35 %). However, the organic matter fermented was 66 % greater for ileal fermentation than hindgut fermentation (P = 0·04). Total numbers of bacteria in ileal and caecal digesta did not differ (P = 0·09). Differences (P < 0·05) were observed in the taxonomic composition. For instance, ileal digesta contained 32-fold greater number of the genus Enterococcus, whereas caecal digesta had a 227-fold greater number of the genus Ruminococcus. Acetate synthesis and iso-valerate synthesis were greater (P < 0·05) for ileal fermentation than hindgut fermentation, but propionate, butyrate and valerate synthesis was lower. SCFA were absorbed in the gastrointestinal tract location where they were synthesised. In conclusion, a quantitatively important degree of fermentation occurs in the ileum of the growing pig fed a human-type diet.
Visceral organs play an important role in animals' energy requirements, so their growth must be well understood. The objective of the current study was to fit and compare growth curves that best describe body and visceral organ growth over time in Saanen goats of different sexes. Data were synthesized from seven studies in which curves were fitted to visceral organ growth over time for female, intact male and castrated male Saanen goats from 5 to 45 kg body weight. The liver, pancreas, spleen, rumen–reticulum, omasum, abomasum, small intestine, large intestine and mesenteric adipose tissue (MAT) data were fitted to eight models: simple linear regression, quadratic, monomolecular, Brody, Von Bertalanffy, logistic, Gompertz and Richards. The best-fit model was chosen based on the corrected Akaike information criterion and the concordance correlation coefficient. Model parameters for each sex were compared. Overall, the model that best described visceral organ growth was the logistic model. Sex did not influence the parameters that predicted organ growth (g), except for MAT, where females presented a lower tissue deposition rate and greater inflection point than males. Irrespective of sex, at the beginning of the growth curve, the liver accounted for 28 ± 1.1 g/kg of empty body weight, and the inflection point occurred at 1.7 months. The rumen–reticulum and large intestine presented higher growth rates in the first 2 months of life. Knowledge of the visceral organ growth curve is useful in improving the understanding of the effect of nutritional requirements for goats and must be used to optimize the nutritional plans.