The objective of this study was to test if intracytoplasmic sperm injection (ICSI)-mediated gene transfer was an effective method in the production of transgenic rabbit embryos. Rabbit sperm diluted in different media with various pH were treated by freezing without cryoprotectant, and their ability for DNA uptake was determined. In these experiments using production of transgenic rabbit embryos by ICSI, exogenous genes at three concentrations and of two conformation types were used. The rate of DNA association to the sperm seen by rhodamine-tagged DNA encoding green fluorescent protein (GFP) was 90.0%, 92.7%, 91.0%, 91.7%, and 92.3%, respectively in TCM199, DM, DPBS, CZB, and HCZB media. The DNA attachment to sperm was not affected by media pH within the range of 5.4–9.4 (p > 0.05). Expression of GFP first occurred at the 2-cell stage and continued to blastocyst formation. DNA concentration (between 5, 10, and 20 ng/μl) or conformation (linear and circular) had no effect on the production rate of transgenic embryos. These results indicated that genetically modified rabbit blastocysts can be efficiently produced by ICSI technique.