Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T22:54:52.788Z Has data issue: false hasContentIssue false

Production of transgenic rabbit embryos through intracytoplasmic sperm injection

Published online by Cambridge University Press:  27 July 2010

Qiuyan Li
Affiliation:
State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100094, P.R. China.
Jian Hou
Affiliation:
State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100094, P.R. China.
Sheng Wang
Affiliation:
State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100094, P.R. China.
Yongfu Chen
Affiliation:
State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100094, P.R. China.
Xiao-Rong An*
Affiliation:
State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Haidian District, Beijing 100094, P.R. China.
*
All correspondence to: Xiao-Rong An, State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Haidian District, Beijing 100094, P.R. China. Tel:/Fax: +86 10 62733463. e-mail: [email protected]

Summary

The objective of this study was to test if intracytoplasmic sperm injection (ICSI)-mediated gene transfer was an effective method in the production of transgenic rabbit embryos. Rabbit sperm diluted in different media with various pH were treated by freezing without cryoprotectant, and their ability for DNA uptake was determined. In these experiments using production of transgenic rabbit embryos by ICSI, exogenous genes at three concentrations and of two conformation types were used. The rate of DNA association to the sperm seen by rhodamine-tagged DNA encoding green fluorescent protein (GFP) was 90.0%, 92.7%, 91.0%, 91.7%, and 92.3%, respectively in TCM199, DM, DPBS, CZB, and HCZB media. The DNA attachment to sperm was not affected by media pH within the range of 5.4–9.4 (p > 0.05). Expression of GFP first occurred at the 2-cell stage and continued to blastocyst formation. DNA concentration (between 5, 10, and 20 ng/μl) or conformation (linear and circular) had no effect on the production rate of transgenic embryos. These results indicated that genetically modified rabbit blastocysts can be efficiently produced by ICSI technique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bredderman, P.J., Foote, R.H. & Yassen, A.M. (1964). An improved artificial vagina for collecting rabbit semen. J. Reprod. Fertil. 30, 401–3.CrossRefGoogle Scholar
Buhler, T.A., Bruyere, T., Went, D.F., Stranzinger, G. & Burki, K. (1990). Rabbit beta–casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology 8, 140–3.Google ScholarPubMed
Camaioni, A., Russo, M.A., Odorisio, T., Gandolfi, F., Fazio, V.M. & Siracusa, G. (1992). Uptake of exogenous DNA by mammalian spermatozoa—specific localization of DNA on sperm heads. J. Reprod. Fertil. 96, 203–12.Google Scholar
Celebi, C., Auvray, P., Benvegnu, T., Plusquellec, D., Jegou, B. & Guillaudeux, T. (2002). Transient transmission of a transgene in mouse offspring following in vivo transfection of male germ cells. Mol. Reprod. Dev. 62, 477–82.Google Scholar
Chan, A.W.S., Luetjens, C.M., Dominko, T., Ramalho-Santos, J., Simerly, C.R., Hewitson, L. & Schatten, G. (2000a). Transgenic ICSI reviewed: foreign DNA transmission by intracytoplasmic sperm injection in Rhesus monkey. Mol. Reprod. Dev. 56, 325–8.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Chan, A.W.S., Luetjens, C.M., Dominko, T., Ramalho-Santos, J., Simerly, C.R., Hewitson, L. & Schatten, G. (2000b). Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live Rhesus monkey births. Mol. Hum. Reprod. 6, 2633.Google Scholar
Chang, K., Qian, J., Jiang, M., Liu, Y., Wu, M., Chen, C.D., Lai, C.K., Lo, H.L., Hsiao, C.T., Drown, L., Bolen, J.J., Huang, H.I., Ho, P.Y., Shih, P.Y., Yao, C.W., Lin, W.J., Chen, C.H., Wu, F.Y., Lin, Y.J., Xu, J. & Wang, K. (2002). Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2, 5.CrossRefGoogle ScholarPubMed
Fan, T. & Watanabe, T. (2003). Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol.Therapeut. 99, 261–82.Google Scholar
Farre, L., Rigau, T., Mogas, T., Garci, A.R.M, Canai, M., Gomez-Foix, A.M. & Rodri Guez-Gil, J.E. (1999). Adenovirus-mediated introduction of DNA into pig sperm and offspring. Mol. Reprod. Dev. 53, 149–58.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Hirabayashi, M., Ito, K., Sekimoto, A., Hochi, S. & Ueda, M. (2001). Production of transgenic rats using young Sprague–Dawley females treated with PMSG and hCG. Exp. Anim. 50, 365–9.CrossRefGoogle ScholarPubMed
Hirabayashi, M., Kato, M., Aoto, T., Sekimoto, A., Ueda, M., Miyoshi, I., Kasai, N. & Hochi, S. (2002). Offspring derived from intracytoplasmic injection of transgenic rat sperm. Transgenic Res. 11, 221–8.CrossRefGoogle Scholar
Hirabayashi, M., Kato, M., Ishikawa, A., Kaneko, R., Yagi, T. & Hochi, S. (2005). Factors affecting production of transgenic rats by ICSI-mediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA. Mol. Reprod. Dev. 70, 422–8.CrossRefGoogle ScholarPubMed
Horan, R., Powell, R., McQuaid, S., Gannon, F. & Houghton, J.A. (1991). Association of foreign DNA with porcine spermatozoa. Arch. Androl. 26, 8392.CrossRefGoogle ScholarPubMed
Huguet, E. & Esponda, P. (1998). Foreign DNA introduced into the vas deferens is gained by mammalian spermatozoa. Mol. Reprod. Dev. 51, 4252.Google Scholar
Huguet, E. & Esponda, P. (2000). Generation of genetically modified mice by spermatozoa transfection in vivo: preliminary results. Mol. Reprod. Dev. 56, 243–7.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Kaneko, T., Moisyadi, S., Suganuma, R., Hohn, B., Yanagimachi, R. & Pelczar, P. (2005). Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection. Theriogenology 64, 1704–15.Google Scholar
Kato, M., Yamanouchi, K., Ikawa, M., Okabe, M., Naito, K. & Tojo, H. (1999). Efficient selection of transgenic mouse embryos using EGFP as a marker gene. Mol. Reprod. Dev. 54, 43–8.Google Scholar
Kato, M., Ishikawa, A., Kaneko, R., Yagi, T., Hochi, S. & Hirabayashi, M. (2004). Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA: a preliminary study. Mol. Reprod. Dev. 69, 153–8.Google Scholar
Lai, L.X., Sun, Q.Y., Wu, G.M., Murphy, C.N., Kuhholzer, B., Park, K.W., Bonk, A.J., Bill, N., Day, B.N. & Prather, R.S. (2001). Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into in vitro matured oocytes. Zygote 9, 339–46.CrossRefGoogle ScholarPubMed
Lavitrano, M. & Maione, B. (1997). The interaction of sperm cells with exogenous DNA: a role of CD4 and major histocompatibility complex class II molecules. Exp. Cell. Res. 233, 5662.Google Scholar
Lavitrano, M., Camaioni, A., Fazio, V.M., Dolci, S., Farace, M.G. & Spadafora, C. (1989). Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57, 717–23.CrossRefGoogle ScholarPubMed
Li, Q., Hou, J., Wang, S., Guan, H., Zhang, N., Chen, Y. & An, X. (2009). Viable rabbits derived from oocytes by intracytoplasmic injection of spermatozoa from an infertile male. Zygote 17, 157–62.CrossRefGoogle ScholarPubMed
Moreira, P.N., Giraldo, P., Cozar, P., Pozueta, J., Jimenez, A., Montoliu, L. & Gutierrez-Adan, A. (2004). Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol. Reprod. 71, 1943–7.CrossRefGoogle ScholarPubMed
Murakami, H., Fujimura, T., Nomura, K. & Imai, H. (2002). Factors influencing efficient production of transgenic rabbits. Theriogenology 57, 2237–45.Google Scholar
Nagashima, H., Fujimura, T., Takahagi, Y., Kurome, M., Wako, N., Ochiai, T., Esaki, R., Kano, K., Saito, S., Okabe, M. & Murakami, H. (2003). Development of efficient strategies for the production of genetically modified pigs. Theriogenology 59, 95106.Google Scholar
Ogawa, S., Hayashi, K., Jada, N., Sato, M., Kurihara, T. & Imaya, M. (1995). Gene expression in blastocysts following direct injection of DNA into testis. J. Reprod. Dev. 41, 379–82.CrossRefGoogle Scholar
Osada, T., Toyoda, A., Moisyadi, S., Akutu, S., Hattori, M., Sakaki, Y. & Yanagimachi, R. (2005). Production of inbred and hybrid transgenic mice carrying large (>200 kb) foreign DNA fragments by intracytoplasmic sperm injection. Mol. Reprod. Dev. 72, 329–35.CrossRefGoogle ScholarPubMed
Perry, A.C., Rothman, A., de las Heras, J.I., Feinstein, P., Monbaerts, P., Cooke, H.J. & Wakayama, T. (2001). Efficient metaphase II transgenesis with different transgene archetypes. Nat. Biotechnol. 19, 1071–3.CrossRefGoogle ScholarPubMed
Perry, A.C., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y. & Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–3.CrossRefGoogle ScholarPubMed
Sato, M., Gotoh, K. & Kimura, M. (1999). Sperm-mediated gene transfer by direct injection of foreign DNA into mouse testis. Transgenics 2, 357–69.Google Scholar
Sato, M., Ishikawa, A. & Kimura, M. (2002). Direct injection of foreign DNA into mouse testis as a possible in vivo gene transfer system via epididymal spermatozoa. Mol. Reprod. Dev. 69, 153–8.Google Scholar
Shemesh, M., Gurevich, M., Harel-Markowitz, E., Benvenisti, L., Shore, L.S. & Stram, Y. (2000). Gene integration into bovine sperm genome and its expression in transgenic offspring. Mol. Reprod. Dev. 56, 306–8.Google Scholar
Shen, W., Li, L., Pan, Q., Min, L., Dong, H. & Deng, J. (2006). Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol. Reprod. Dev. 73, 589–94.Google Scholar
Szczygiel, M.A., Moisyadi, S. & Ward, W.S. (2003). Expression of foreign DNA is associated with paternal chromosome degradation in intracytoplasmic sperm injection-mediated transgenesis in the mouse. Biol. Reprod. 68, 1903–10.CrossRefGoogle ScholarPubMed
Venugopal, T., Anathy, V., Kirankumar, S. & Pandian, T.J. (2004). Growth enhancement and food conversion efficiency of transgenic fish Labeo rohita. J. Exp. Zool. 301A, 477–90.CrossRefGoogle Scholar
Wang, H.J., Lin, A.X., Zhang, Z.C. & Chen, Y.F. (2001). Expression of porcine growth hormone gene in transgenic rabbits as reported by green fluorescent protein. Anim. Biotechnol. 12, 101–10.CrossRefGoogle ScholarPubMed
Wang, H.J., Lin, A.X. & Chen, Y.F. (2003). Association of rabbit sperm cells with exogenous DNA. Anim. Biotechnol. 14, 155–65.Google Scholar
Yonezawa, T., Furuhata, Y., Hirabayashi, K., Suzuki, M., Takahashi, M. & Nishihara, M. (2001). Detection of transgene in progeny at different developmental stages following testis-mediated gene transfer. Mol. Reprod. Dev. 60, 196201.CrossRefGoogle ScholarPubMed