We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is shown that the Riemann tensor can be calculated in a simpler way when the metric is represented by a basis of differential forms. The formulae for the basis components of the Christoffel symbols (called Ricci rotation coefficients) and of the Riemann tensor are derived. A still-easier way to calculate the Riemann tensor, by using algebraic computer programs, is briefly advertised.
We introduce basic topological concepts, which are used to define continuous mappings, and topological invariants. Next, we introduce a differential structure on manifolds, to extend calculus from Euclidean spaces to the more general setting of differentiable manifolds.
This Chapter describes, in concise manner, aspects of differential geometry that are necessary to follow the developments of this book. We give several definitions of the concept of the manifold, illustrated by a number of examples. We then define differential forms, which are viewed as the most primitive objects one can put on a manifold. We define their wedge product and the operation of exterior differentiation. We then define the notions necessary to define the integration of differential forms. After this we define vector fields, their Lie bracket, interior product, then tensors. We then describe the Lie derivative. We briefly talk about distributions and their integrability conditions. Define metrics and isometries. Then define Lie groups, discuss their action on manifolds, then define Lie algebras. Describe main Cartan's isomoprhisms. Define fibre bundles and the Ehresmann connections. Define principal bundles and connections in them. Describe the Hopf fibration. Define vector bundles and give some canonical examples of the latter. Describe covariant differentiation. Briefly reivew Riemannian geometry and the affine connection. We end this Chapter with a description of spinors and their relation to differential forms.
This monograph describes the different formulations of Einstein's General Theory of Relativity. Unlike traditional treatments, Cartan's geometry of fibre bundles and differential forms is placed at the forefront, and a detailed review of the relevant differential geometry is presented. Particular emphasis is given to general relativity in 4D space-time, in which the concepts of chirality and self-duality begin to play a key role. Associated chiral formulations are catalogued, and shown to lead to many practical simplifications. The book develops the chiral gravitational perturbation theory, in which the spinor formalism plays a central role. The book also presents in detail the twistor description of gravity, as well as its generalisation based on geometry of 3-forms in seven dimensions. Giving valuable insight into the very nature of gravity, this book joins our highly prestigious Cambridge Monographs in Mathematical Physics series. It will interest graduate students and researchers in the fields of theoretical physics and differential geometry.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
First, we extend the notion of stratified spaces to diffeology. Then we characterise the subspace of stratified differential forms, or zero-perverse forms in the sense of Goresky–MacPherson, which can be extended smoothly into differential forms on the whole space. For that we introduce an index which outlines the behaviour of the perverse forms on the neighbourhood of the singular strata.
In this paper we study the notion of equivariant forms introduced in the authors' previous works. In particular, we completely classify all the equivariant forms for a subgroup of $\text{S}{{\text{L}}_{2\left( \mathbb{Z} \right)}}$ by means of the cross-ratio, weight 2 modular forms, quasimodular forms, as well as differential forms of a Riemann surface and sections of a canonical line bundle.
A unified process for the construction of hierarchical conforming bases on a range of element types is proposed based on an ab initio preservation of the underlying cohomology. This process supports not only the most common simplicial element types, as are now well known, but is generalized to squares, hexahedra, prisms and importantly pyramids. Whilst these latter cases have received (to varying degrees) attention in the literature, their foundation is less well developed than for the simplicial case. The generalization discussed in this paper is effected by recourse to basic ideas from algebraic topology (differential forms, homology, cohomology, etc) and as such extends the fundamental theoretical framework established by the work of Hiptmair and Arnold et al. for simplices. The process of forming hierarchical bases involves a recursive orthogonalization and it is shown that the resulting finite element mass, quasi-stiffness and composite matrices exhibit exponential or better growth in condition number.
Given a normal variety Z, a p-form σ defined on the smooth locus of Z and a resolution of singularities , we study the problem of extending the pull-back π*(σ) over the π-exceptional set . For log canonical pairs and for certain values of p, we show that an extension always exists, possibly with logarithmic poles along E. As a corollary, it is shown that sheaves of reflexive differentials enjoy good pull-back properties. A natural generalization of the well-known Bogomolov–Sommese vanishing theorem to log canonical threefold pairs follows.
One-to-one correspondences are established between the set of all nondegenerate graded Jacobi operators of degree $-1$ defined on the graded algebra $\Omega(M)$ of differential forms on a smooth, oriented, Riemannian manifold $M$, the space of bundle isomorphisms $L{\A}TM{\to} TM$, and the space of nondegenerate derivations of degree $1$ having null square. Derivations with this property, and Jacobi structures of odd $\Bbb Z_2$-degree are also studied through the action of the automorphism group of $\Omega(M)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.