Define the Collatz map
${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$
on the positive integers
$\mathbb {N}+1 = \{1,2,3,\dots \}$
by setting
${\operatorname {Col}}(N)$
equal to
$3N+1$
when N is odd and
$N/2$
when N is even, and let
${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$
denote the minimal element of the Collatz orbit
$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $
. The infamous Collatz conjecture asserts that
${\operatorname {Col}}_{\min }(N)=1$
for all
$N \in \mathbb {N}+1$
. Previously, it was shown by Korec that for any
$\theta> \frac {\log 3}{\log 4} \approx 0.7924$
, one has
${\operatorname {Col}}_{\min }(N) \leq N^\theta $
for almost all
$N \in \mathbb {N}+1$
(in the sense of natural density). In this paper, we show that for any function
$f \colon \mathbb {N}+1 \to \mathbb {R}$
with
$\lim _{N \to \infty } f(N)=+\infty $
, one has
${\operatorname {Col}}_{\min }(N) \leq f(N)$
for almost all
$N \in \mathbb {N}+1$
(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a
$3$
-adic cyclic group
$\mathbb {Z}/3^n\mathbb {Z}$
at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.