The gut pH plays crucial roles in diet preference, habitat choice, insect fitness, and insect-microbial relationships. It significantly impacts enzyme activity efficiency, as well as the internalisation and efficacy of pesticides. Without a comprehensive understanding of the gut environment, potential pest management strategies cannot be fully optimised.
This study investigates the gut pH of the globally invasive pest insect Western flower thrips Frankliniella occidentalis, and the effect its Gram-negative symbiotic gut bacterium BFo2 has on pH modulation. Indicator dyes were fed to F. occidentalis and the gut pH was found to vary between 6 and 7. In general, the larval and adult guts appear to have a pH of between 6 and 6.5; however, the posterior gut of some adults appears to be closer to 7. This almost neutral pH offers a favourable environment for the neutrophilic symbiotic BFo2. The ability of BFo2 isolates to buffer pH towards neutral was also observed during in vitro culture using broths at different pH values.
This paper also discusses the implications of this gut environment on dsRNAi delivery. By laying the foundation for understanding how gut pH can be leveraged to enhance current pest management strategies, this study particularly benefits research aimed at optimising the delivery of lethal dsRNA through symbiont-mediated RNAi to Western flower thrips in pest management programs.