We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Aviles Giga functional is a well known second order functional that forms a model for
blistering and in a certain regime liquid crystals, a related functional models thin
magnetized films. Given Lipschitz domain Ω ⊂ ℝ2 the functional
is
\hbox{$I_{\ep}(u)=\frac{1}{2}\int_{\Omega}
\ep^{-1}\lt|1-\lt|Du\rt|^2\rt|^2+\ep\lt|D^2 u\rt|^2 {\rm d}z$} where
u belongs to the subset of functions in
\hbox{$W^{2,2}_{0}(\Omega)$} whose gradient (in the
sense of trace) satisfies
Du(x)·ηx = 1
where ηx is the inward pointing unit normal
to ∂Ω at x. In [Ann. Sc. Norm. Super. Pisa Cl.
Sci. 1 (2002) 187–202] Jabin et al. characterized
a class of functions which includes all limits of sequences
\hbox{$u_n\in W^{2,2}_0(\Omega)$} with
Iϵn(un) → 0
as ϵn → 0. A corollary to their work is that
if there exists such a sequence (un) for a
bounded domain Ω, then Ω must be a ball and (up to
change of sign)
u: = limn → ∞un = dist(·,∂Ω).
Recently [Lorent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted),
http://arxiv.org/abs/0902.0154v1] we provided a quantitative generalization
of this corollary over the space of convex domains using ‘compensated compactness’
inspired calculations of DeSimone et al. [Proc. Soc. Edinb. Sect.
A 131 (2001) 833–844]. In this note we use methods of regularity
theory and ODE to provide a sharper estimate and a much simpler proof for the case where
Ω = B1(0) without the requiring the trace
condition on Du.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.