Article contents
A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity
Published online by Cambridge University Press: 13 April 2011
Abstract
The Aviles Giga functional is a well known second order functional that forms a model for blistering and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz domain Ω ⊂ ℝ2 the functional is \hbox{$I_{\ep}(u)=\frac{1}{2}\int_{\Omega} \ep^{-1}\lt|1-\lt|Du\rt|^2\rt|^2+\ep\lt|D^2 u\rt|^2 {\rm d}z$}Iϵ(u)=12∫Ωϵ-11−Du22+ϵD2u2dz where u belongs to the subset of functions in \hbox{$W^{2,2}_{0}(\Omega)$}W02,2(Ω) whose gradient (in the sense of trace) satisfies Du(x)·ηx = 1 where ηx is the inward pointing unit normal to ∂Ω at x. In [Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 187–202] Jabin et al. characterized a class of functions which includes all limits of sequences \hbox{$u_n\in W^{2,2}_0(\Omega)$}un∈W02,2(Ω) with Iϵn(un) → 0 as ϵn → 0. A corollary to their work is that if there exists such a sequence (un) for a bounded domain Ω, then Ω must be a ball and (up to change of sign) u: = limn → ∞un = dist(·,∂Ω). Recently [Lorent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted), http://arxiv.org/abs/0902.0154v1] we provided a quantitative generalization of this corollary over the space of convex domains using ‘compensated compactness’ inspired calculations of DeSimone et al. [Proc. Soc. Edinb. Sect. A 131 (2001) 833–844]. In this note we use methods of regularity theory and ODE to provide a sharper estimate and a much simpler proof for the case where Ω = B1(0) without the requiring the trace condition on Du.
Keywords
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 18 , Issue 2 , April 2012 , pp. 383 - 400
- Copyright
- © EDP Sciences, SMAI, 2011
References
- 4
- Cited by