A method was developed that takes into account flexibility of robot links in the inverse dynamics calculations. This method uses the Newton-Euler equations and is applicable for special case systems that allow for only a small degree of flexibility. Application of the method should improve the accuracy of the position of the end effector during motion of the robot.
The results of this study show that the method can be based entirely on an existing rigid-link model with only minimal changes required as additions. The computational complexity of the method is discussed briefly as well and indicates an increase of computations of slightly more than a factor of two as compared to a rigid-link model for the same robot geometry.