Let $p$ be prime and let $\vartheta \,\in \,\mathbb{Z}_{p}^{*}$ be of multiplicative order $t$ modulo $p$. We consider exponential sums of the form
$$S\left( a \right)\,=\,\sum\limits_{x=1}^{t}{\exp \left( 2\pi ia{{\vartheta }^{{{x}^{2}}}}\,/\,p \right)}$$
and prove that for any $\varepsilon \,>\,0$
$$\underset{\gcd (a,\,p)\,=\,1}{\mathop{\max }}\,\,\left| S\left( a \right) \right|\,=\,O\left( {{t}^{5/6+\varepsilon }}\,{{p}^{1/8}} \right)$$