Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T13:20:04.193Z Has data issue: false hasContentIssue false

THE MULTIFRACTAL SPECTRUM OF CONTINUED FRACTIONS WITH NONDECREASING PARTIAL QUOTIENTS

Published online by Cambridge University Press:  25 November 2024

KUNKUN SONG
Affiliation:
Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China e-mail: [email protected]
XIAOYAN TAN
Affiliation:
School of Mathematics and Statistics, HuaZhong University of Science and Technology, Wuhan 430074, China e-mail: [email protected]
ZHENLIANG ZHANG*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
Rights & Permissions [Opens in a new window]

Abstract

Let $[a_1(x),a_2(x),\ldots ,a_n(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$ and $q_n(x)$ be the denominator of its nth convergent. The irrationality exponent and Khintchine exponent of x are respectively defined by

$$ \begin{align*} \overline{v}(x)=2+\limsup_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)} \quad \text{and}\quad \gamma(x)=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\log a_i(x). \end{align*} $$

We study the multifractal spectrum of the irrationality exponent and the Khintchine exponent for continued fractions with nondecreasing partial quotients. For any $v>2$, we completely determine the Hausdorff dimensions of the sets $\{x\in [0,1): a_1(x)\leq a_2(x)\leq \cdots , \overline {v}(x)=v\}$ and

$$ \begin{align*}\bigg\{x\in[0,1): a_1(x)\leq a_2(x)\leq\cdots, \lim\limits_{n\to\infty}\frac{\log a_1(x)+\log a_2(x)+\cdots+\log a_n(x)}{\psi(n)}=1\bigg\},\end{align*} $$

where $\psi :\mathbb {N}\rightarrow \mathbb {R}^+$ is a function satisfying $\psi (n)\to \infty $ as $n\to \infty $.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Diophantine approximation is a branch of number theory that can be described as a quantitative analysis of the density of the rational numbers in the real numbers. The first result is due to Dirichlet and is a simple consequence of the pigeonhole principle.

Theorem 1.1 (Dirichlet, 1842).

For any $x\in [0,1)$ and $t>1$ , there exists $(q,p)\in \mathbb {N}^2$ such that

$$ \begin{align*} \bigg|x-\frac{p}{q}\bigg|<\frac{1}{qt}\quad \text{and}\quad 1\leq q\leq t.\end{align*} $$

Denote

$$ \begin{align*}J(v)=\bigg\{x\in[0,1): \bigg|x-\frac{p}{q}\bigg|<\frac{1}{q^v}\ \text{for infinitely many}\ (q,p)\in\mathbb{N}^2 \bigg\}.\end{align*} $$

Dirichlet’s theorem implies that the set $J(v)$ equals $[0,1)$ for any $v\leq 2$ . Khintchine [Reference Khintchine16] proved that the set $J(v)$ is of Lebesgue measure zero for any $v>2$ . Jarník [Reference Jarník13] and Besicovitch [Reference Besicovitch1] independently showed that the Hausdorff dimension of these null sets $J(v)$ is $2/v$ . Since the map $v\rightarrow J(v)$ is nonincreasing, it is natural to define

(1.1) $$ \begin{align} \overline{v}(x)=\sup\{v\in\mathbb{R}: x\in J(v)\}. \end{align} $$

We call $\overline {v}(x)$ the irrationality exponent of an irrational number $x\in [0,1)$ . The irrationality exponent $\overline {v}(x)$ reflects how well an irrational number x can be approximated by rational numbers: the higher the exponent, the better the approximation.

The theory of continued fractions is closely related to Diophantine approximation. It is well known that continued fraction expansions can be induced by the Gauss map $T : [0,1)\rightarrow [0,1)$ defined by

$$ \begin{align*} T(0):=0,\ \ T(x):=1/x\ (\text{mod }1)\quad \text{for } x\in(0,1). \end{align*} $$

Each irrational number $x \in [0,1)$ admits a unique continued fraction expansion

(1.2) $$ \begin{align} x = \frac{1}{a_1(x) +\dfrac{1}{a_2(x)+\dfrac{1}{\ddots}}} =[a_1(x), a_2(x),\ldots, a_n(x),\ldots], \end{align} $$

where $a_1(x)=\lfloor {1}/{x}\rfloor $ and $a_n(x)=a_1(T^{n-1}(x))\ (n\geq 2)$ are called the partial quotients of the continued fraction expansion of x. For each $n\geq 1$ , let the fraction

$$ \begin{align*} \frac{p_n(x)}{q_n(x)}=\dfrac{1}{a_1(x) +\dfrac{1}{a_2(x)+\dfrac{1}{\ddots+\dfrac{1}{a_n(x)}}}}=[a_1(x),a_2(x),\ldots,a_n(x)] \end{align*} $$

be the nth convergent of the continued fraction expansion of x. Via continued fractions, the irrationality exponent defined in (1.1) can be represented by

(1.3) $$ \begin{align} \overline{v}(x)=2+\limsup\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}. \end{align} $$

From the fundamental work of Khintchine [Reference Khintchine16] (see Bugeaud [Reference Bugeaud3, Ch. 1]), ${\overline {v}(x)=2}$ for Lebesgue almost all irrational numbers. The Khintchine exponent of x with continued fraction expansion (1.2) is defined (if the limits exist) by

$$ \begin{align*} \gamma(x):=\lim\limits_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\log a_i(x)=\lim\limits_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\log a_1(T^{i-1}(x)). \end{align*} $$

The Gauss map T is ergodic (see, for example, [Reference Iosifescu and Kraaikamp11]) with respect to the Gauss measure $dx/((x+1)\log 2)$ . By Birkhoff’s ergodic theorem, for Lebesgue almost all $x\in [0,1)$ ,

$$ \begin{align*}\gamma(x)=\int_{0}^{1}\frac{\log a_1(x)}{(x+1)\log2}\,dx=\log(2.6584\cdots).\end{align*} $$

For more details about continued fractions, we refer to [Reference Iosifescu and Kraaikamp11, Reference Khintchine17].

Much attention has been paid to the multifractal analysis of the level sets of the irrationality exponent and Khintchine exponent. For any $v>2$ , a result of Good [Reference Good10, Theorem 9] implies that the set $E_{\overline {v}(x)\geq v}(v)=\{x\in [0,1): \overline {v}(x)\geq v\}$ is of Hausdorff dimension $2/v$ . The main result of Bugeaud [Reference Bugeaud2, Theorem 1] shows that the set $E_{\overline {v}(x)=v}(v)=\{x\in [0,1): \overline {v}(x)=v\}$ is also of Hausdorff dimension $2/v$ . Sun and Wu [Reference Sun and Wu22] considered the set

$$ \begin{align*}E(v)=\bigg\{x\in[0,1):\ 2+\lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}=v\bigg\}\end{align*} $$

and proved that $E(v)$ has Hausdorff dimension $1/v$ . Replacing the $\limsup $ by $\liminf $ in (1.3), one can define the corresponding irrationality exponent by

$$ \begin{align*}\underline{v}(x)=2+\liminf\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}.\end{align*} $$

Tan and Zhou [Reference Tan and Zhou23] calculated the Hausdorff dimension of the intersection of level sets defined by $\overline {v}(x)$ and $\underline {v}(x)$ , and also showed that the set $E_{\underline {v}(x)\geq v}(v)=\{x\in [0,1): \underline {v}(x)\geq v\}$ is of Hausdorff dimension $1/v$ for any $v>2$ . Based on these dimensional results for the sets $E(v)$ and $E_{\underline {v}(x)\geq v}(v)$ , it follows easily that the set $E_{\underline {v}(x)=v}(v)=\{x\in [0,1): \underline {v}(x)=v\}$ is of Hausdorff dimension $1/v$ for any $v>2$ . For the multifractal analysis of level sets of the Khintchine exponent $\gamma (x)$ , Fan et al. [Reference Fan, Liao, Wang and Wu6, Theorem 1.2] presented a complete characterisation for the Hausdorff dimension of the sets

$$ \begin{align*}E_{\gamma(x)=\xi}(\xi)=\{x \in [0,1): \gamma(x)=\xi\}\quad (0\leq\xi\leq\infty).\end{align*} $$

More precisely, they proved that the Hausdorff dimension of the set $E_{\gamma (x)=\xi }(\xi )$ , as a function of $\xi \in [0,\infty )$ , is neither concave nor convex, and that the set $E_{\gamma (x)=\xi }(\infty )$ is of Hausdorff dimension $1/2$ . This shows that there exist uncountably many points with infinite Khintchine exponent. Fan et al. [Reference Fan, Liao, Wang and Wu6, Reference Fan, Liao, Wang and Wu7] gave a more refined classification for the set $E_{\gamma (x)=\xi }(\infty )$ by considering the multifractal spectrum of the level sets of the fast Khintchine exponent defined by

$$ \begin{align*} K(\psi)=\bigg\{x\in[0,1): \lim\limits_{n\to\infty}\frac{\log a_1(x)+\log a_2(x)+\cdots+\log a_n(x)}{\psi(n)}=1\bigg\}, \end{align*} $$

where $\psi :\mathbb {N}\rightarrow \mathbb {R}^+$ is a function satisfying $\psi (n)/n\to \infty $ as $n\to \infty $ .

Various related exponents have been investigated. For example, Pollicott and Weiss [Reference Pollicott and Weiss19] studied the Lyapunov exponent of the Gauss map, Kesseböhmer and Stratmann [Reference Kesseböhmer and Stratmann15] the Minkowski’s question mark function, Nicolay and Simons [Reference Nicolay and Simons18] the Hölder exponent, Jaffard and Martin [Reference Jaffard and Martin12] the Brjuno function, Fang et al. [Reference Fang, Ma, Song and Wu8] the convergence exponent and Song et al. [Reference Song, Tan and Zhang21] the irrationality exponent and the convergence exponent.

Multifractal analysis of sets characterised by two (or more) different Diophantine characteristics could potentially show that they are independent or, conversely, help to detect profound links between these characteristics. This paper is mainly concerned with the multifractal spectrum of the irrationality exponent and the Khintchine exponent defined by a nondecreasing sequence of partial quotients. That is, we investigate the Hausdorff dimension of the intersection of the sets $E_{\overline {v}(x)=v}(v), K(\psi )$ and $\Lambda $ , where

$$ \begin{align*}\Lambda=\{x\in[0,1):\ a_{n}(x)\leq a_{n+1}(x)\mbox{ for all}\ n\geq1\}.\end{align*} $$

By a result of Ramharter [Reference Ramharter20], the set $\Lambda $ is of Hausdorff dimension $1/2$ (see also Jordan and Rams [Reference Jordan and Rams14] for general results in the setting of infinite iterated function systems).

Throughout this paper, we use the notation $\dim _{\mathrm {H}}$ to denote the Hausdorff dimension (see [Reference Falconer5]). We are now in a position to state our main results.

Theorem 1.2. For any $v>2$ ,

$$ \begin{align*} \begin{cases} \dim_{\mathrm{H}}(E(v)\cap\Lambda)=\dim_{\mathrm{H}}(E_{\overline{v}(x)=v}(v)\cap\Lambda)=\dim_{\mathrm{H}}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda)={1}/{v},\cr \dim_{\mathrm{H}}(E_{\underline{v}(x)=v}(v)\cap\Lambda)=\dim_{\mathrm{H}}(E_{\underline{v}(x)\geq v}(v)\cap\Lambda)={1}/{v}. \end{cases} \end{align*} $$

We are also interested in the Hausdorff dimension of the intersection of $\Lambda $ with the sets $E_{\overline {v}(x)\leq v}(v)=\{x\in [0,1):\overline {v}(x)\leq v\}$ and $E_{\underline {v}(x)\leq v}(v)=\{x\in [0,1):\underline {v}(x)\leq v\}$ .

Theorem 1.3. For any $v>2$ ,

$$ \begin{align*}\dim_{\mathrm{H}}(E_{\overline{v}(x)\leq v}(v)\cap\Lambda)=\dim_{\mathrm{H}}(E_{\underline{v}(x)\leq v}(v)\cap\Lambda)=\tfrac{1}{2}.\end{align*} $$

Let $\psi $ and $\tilde {\psi }$ be positive functions defined on $\mathbb {N}$ . We say $\psi $ and $\tilde {\psi }$ are equivalent if $\psi (n)/\tilde {\psi }(n)\to 1$ as $n\to \infty $ . Fan et al. [Reference Fan, Liao, Wang and Wu7, Lemma 3.1] proved that $K(\psi )\neq \emptyset $ if and only if $\psi $ is equivalent to a nondecreasing function. This also applies to the subset $K(\psi )\cap \Lambda $ . In the following we always assume that $\psi $ is nondecreasing.

Theorem 1.4. Let $\psi :\mathbb {N}\rightarrow \mathbb {R}^+$ be a function satisfying $\psi (n)\to \infty $ as $n\to \infty $ .

  1. (i) If $\psi (n)/(n\log n)\to \alpha \ \ (0\leq \alpha <\infty )$ as $n\to \infty $ , then

    $$ \begin{align*} \dim_{\mathrm{H}}(K(\psi)\cap\Lambda)= \begin{cases} 0, & 0\leq\alpha<1,\cr {(\alpha-1)}/{2\alpha}, & 1\leq\alpha<\infty. \end{cases} \end{align*} $$
  2. (ii) If $\psi (n)/(n\log n)\to \infty $ as $n\to \infty $ and the sequence $\{\psi (n)-\psi (n-1)\}_{n\geq 1}$ is nondecreasing, then

    $$ \begin{align*}\dim_{\mathrm{H}}(K(\psi)\cap\Lambda)=\frac{1}{1+\limsup\limits_{n\to\infty}{\psi(n+1)}/{\psi(n)}}.\end{align*} $$

From the proof of Theorem 1.4, we can calculate the Hausdorff dimension of the intersection of the level sets of the Khintchine exponent $\gamma (x)$ and $\Lambda $ .

Corollary 1.5. For any $0\leq \xi \leq \infty $ ,

$$ \begin{align*} \dim_{\mathrm{H}}(E_{\gamma(x)=\xi}(\xi)\cap\Lambda)= \begin{cases} 0,& 0\leq\xi<\infty,\cr {1}/{2},& \xi=\infty. \end{cases} \end{align*} $$

The Lyapunov exponent of a dynamical system is a quantity that characterises the rate of separation of infinitesimally close trajectories. In the dynamical system of continued fractions, the Lyapunov exponent of orbits of the Gauss map T is defined whenever the limits exist by

$$ \begin{align*} \lambda(x):=\lim_{n\to\infty}\frac{1}{n}\log |(T^n)'(x))|=\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\log |T'(T^j(x))| \end{align*} $$

(see Devaney [Reference Devaney4]). The Hausdorff dimension of the level sets

$$ \begin{align*}E_{\lambda(x)=\xi}(\xi)=\{x \in [0,1): \lambda(x)=\xi\}\quad (0\leq\xi\leq\infty)\end{align*} $$

has been completely characterised in Fan et al. [Reference Fan, Liao, Wang and Wu6, Theorem 1.3]. Similarly, we can define the so-called fast Lyapunov exponent of the Gauss map T by

$$ \begin{align*} \lambda^{\psi}(x):=\lim_{n\to\infty}\frac{1}{\psi(n)}\log |(T^n)'(x))|=\lim_{n\to\infty}\frac{1}{\psi(n)}\sum_{j=0}^{n-1}\log |T'(T^j(x))|, \end{align*} $$

where $\psi :\mathbb {N}\rightarrow \mathbb {R}^+$ is a function satisfying $\psi (n)/n\to \infty $ as $n\to \infty $ . Let

$$ \begin{align*} L(\psi)=\{x \in [0,1): \lambda^{\psi}(x)=1 \}. \end{align*} $$

From [Reference Fan, Liao, Wang and Wu6, Lemma 2.7],

(1.4) $$ \begin{align} \lambda(x)=\lim_{n\to\infty}\frac{2\log q_n(x)}{n}. \end{align} $$

The following result follows directly from the proof of Corollary 1.5.

Corollary 1.6. For any $0\leq \xi \leq \infty $ ,

$$ \begin{align*} \dim_{\mathrm{H}}(E_{\lambda(x)=\xi}(\xi)\cap\Lambda)= \begin{cases} 0,& 0\leq\xi<\infty,\cr {1}/{2},& \xi=\infty. \end{cases} \end{align*} $$

Under the condition $\psi (n)/n\to \infty $ as $n\to \infty $ , we deduce from (1.4) and (2.2) (see below) that $K(\psi )=L(2\psi )$ . Then from Theorem 1.4, the Hausdorff dimension of the intersection of the sets $L(\psi )$ and $\Lambda $ is also determined.

Corollary 1.7. Let $\psi :\mathbb {N}\rightarrow \mathbb {R}^+$ be a function satisfying $\psi (n)/n\to \infty $ as $n\to \infty $ .

  1. (i) If $\psi (n)/(n\log n)\to \alpha \ (0\leq \alpha <\infty )$ as $n\to \infty $ , then

    $$ \begin{align*} \dim_{\mathrm{H}}(L(\psi)\cap\Lambda)= \begin{cases} 0, & 0\leq\alpha<2,\cr {(\alpha-2)}/{2\alpha}, & 2\leq\alpha<\infty. \end{cases} \end{align*} $$
  2. (ii) If $\psi (n)/(n\log n)\to \infty $ as $n\to \infty $ and the sequence $\{\psi (n)-\psi (n-1)\}_{n\geq 1}$ is nondecreasing, then

    $$ \begin{align*}\dim_{\mathrm{H}}(L(\psi)\cap\Lambda)=\frac{1}{1+\limsup\limits_{n\to\infty}{\psi(n+1)}/{\psi(n)}}.\end{align*} $$

We use $\mathbb {N}$ to denote the set of all positive integers, $|\cdot |$ denotes the length of a subinterval of $[0,1)$ , $\exp (x)$ the natural exponential function, $\lfloor x\rfloor $ the largest integer not exceeding x and $\mathcal {H}^{s}$ the s-dimensional Hausdorff measure of a set.

The paper is organised as follows. In Section 2 we present some elementary properties and useful lemmas concerning the dimensional results in continued fractions. Section 3 is devoted to the proofs of the main results.

2 Preliminaries

2.1 Elementary properties of continued fractions

For $n{\kern-1.2pt}\geq{\kern-1.2pt} 1$ and $(a_1,\ldots , a_n){\kern-1pt}\in{\kern-1pt} \mathbb {N}^{n}$ , we call

$$ \begin{align*} I_{n}(a_1, \ldots, a_n): =\{x\in[0,1):\ a_1(x)=a_1, \ldots, a_n(x)=a_n\} \end{align*} $$

a basic interval of order n for the continued fraction. All points in $I_{n}(a_1, \ldots , a_n)$ have the same $p_n(x)$ and $q_n(x)$ . Thus, for $x\in I_{n}(a_1, \ldots , a_n)$ , we write

$$ \begin{align*} p_n(a_1,\ldots,a_n)=p_n=p_n(x)\quad \text{and}\quad q_n(a_1,\ldots,a_n)=q_n=q_n(x). \end{align*} $$

It is well known (see [Reference Khintchine17, page 4]) that $ p_n$ and $q_n$ satisfy the recursive formula:

(2.1) $$ \begin{align} \begin{cases} p_{-1}=1,\quad p_0=0,\quad p_n=a_np_{n-1}+p_{n-2}\quad (n\geq1);\cr q_{-1}=0,\quad q_0=1,\quad q_n=a_nq_{n-1}+q_{n-2}\quad (n\geq1). \end{cases} \end{align} $$

By the second formula of (2.1),

(2.2) $$ \begin{align} \prod_{k=1}^{n}a_k\leq q_n\leq\prod_{k=1}^{n}(a_k+1)\leq2^n\prod_{k=1}^{n}a_k. \end{align} $$

Proposition 2.1 [Reference Iosifescu and Kraaikamp11, page 18].

For any $(a_1, a_2,\ldots , a_n)\in \mathbb {N}^{n}$ , $I_{n}(a_1, a_2,\ldots , a_n)$ is the interval with the endpoints

$$ \begin{align*}\frac{p_n}{q_n}\quad \text{and}\quad \frac{p_n+p_{n-1}}{q_n+q_{n-1}}.\end{align*} $$

As a result, the length of $I_{n}(a_1, a_2,\ldots , a_n)$ is

$$ \begin{align*} |I_{n}(a_1, a_2,\ldots, a_n)|=\frac{1}{q_n(q_n+q_{n-1})}. \end{align*} $$

Combining (2.2) and Proposition 2.1, we deduce that

(2.3) $$ \begin{align} 2^{-2n-1}\bigg(\prod_{k=1}^{n}a_k\bigg)^{-2}\leq |I_{n}(a_1, a_2,\ldots, a_n)| \leq \bigg(\prod_{k=1}^{n}a_k\bigg)^{-2}. \end{align} $$

2.2 Some useful lemmas

The first lemma below gives a lower bound of the Hausdorff dimension of some sets of points whose partial quotients are nondecreasing.

Lemma 2.2 [Reference Fang, Ma, Song and Wu8, Lemma 3.4].

Let $\{s_n\}_{n\geq 1}$ be a sequence of positive integers tending to infinity with $s_n\geq 2$ for any $n\geq 1$ . Set

$$ \begin{align*} \mathbb{F}(\{s_n\}_{n\geq1})=\{x\in[0,1): ns_n\leq a_n(x)<(n+1)s_n \mbox{ for all } n\geq1\}. \end{align*} $$

Then

$$ \begin{align*}\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})=\frac{1}{2+\limsup\limits_{n\to\infty}{(2\log((n+1)!)+ \log s_{n+1})}/{\log(s_1 s_2\cdots s_n)}}.\end{align*} $$

Combining [Reference Fang, Ma, Song and Wu8, Theorem 2.4] and [Reference Fang, Ma, Song and Wu9, Lemma 3.1] immediately yields the Hausdorff dimension of some $\liminf $ level sets whose partial quotients are nondecreasing.

Lemma 2.3. For any $0\leq \alpha <\infty $ ,

$$ \begin{align*} \dim_{\mathrm{H}}\bigg\{x\in\Lambda:\ \liminf\limits_{n\to\infty}\frac{\log a_n(x)}{\log n}\leq\alpha\bigg\}= \begin{cases} 0,& 0\leq\alpha<1,\cr {(\alpha-1)}/{2\alpha},& 1\leq \alpha<\infty. \end{cases} \end{align*} $$

3 Proofs of main results

This section is devoted to the proofs of the main results. Our method is inspired by those of Fan et al. [Reference Fan, Liao, Wang and Wu7] and Fang et al. [Reference Fang, Ma, Song and Wu8].

Proof of Theorem 1.2.

For any $v>2$ , it is clear that

$$ \begin{align*} E(v)\subseteq E_{\overline{v}(x)=v}(v)\subseteq E_{\overline{v}(x)\geq v}(v)\quad \text{and}\quad E(v)\subseteq E_{\underline{v}(x)=v}(v) \subseteq E_{\underline{v}(x)\geq v}(v)\subseteq E_{\overline{v}(x)\geq v}(v). \end{align*} $$

The next lemma follows from the monotonicity of Hausdorff dimension [Reference Falconer5, page 32].

Lemma 3.1. For any $v>2$ ,

$$ \begin{align*} \begin{cases} \dim_{\mathrm{H}}(E(v)\cap\Lambda)\leq\dim_{\mathrm{H}}(E_{\overline{v}(x)=v}(v)\cap\Lambda)\leq\dim_{\mathrm{H}}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda),\cr \begin{aligned} \dim_{\mathrm{H}}(E(v)\cap\Lambda)\leq\dim_{\mathrm{H}}(E_{\underline{v}(x)=v}(v)\cap\Lambda) & \leq\dim_{\mathrm{H}}(E_{\underline{v}(x)\geq v}(v)\cap\Lambda) \\ & \leq\dim_{\mathrm{H}}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda). \end{aligned} \end{cases}\\[-36pt] \end{align*} $$

In view of Lemma 3.1, we divide the proof of Theorem 1.2 into two steps: the upper bound of $\dim _{\mathrm {H}}(E_{\overline {v}(x)\geq v}(v)\cap \Lambda )$ and the lower bound of $\dim _{\mathrm {H}}(E(v)\cap \Lambda )$ .

The upper bound of $\dim _{\mathrm {H}}(E_{\overline {v}(x)\geq v}(v)\cap \Lambda )$ . Our method is to choose a suitable positive real number s such that $\mathcal {H}^{s}(E_{\overline {v}(x)\geq v}(v)\cap \Lambda )<\infty $ . Let us remark that countable sets are of Hausdorff dimension zero, and the difference of the sets $\Lambda $ and

$$ \begin{align*}\Lambda_{\infty}=\{x\in[0,1):\ a_n(x)\leq a_{n+1}(x)\text{ for all } n\geq1 \text{ and } a_n(x)\to\infty \text{ as } n\to\infty\}\end{align*} $$

is a countable set. Thus we only need to consider the Hausdorff dimension of the set $E_{\overline {v}(x)\geq v}(v)\cap \Lambda _{\infty }$ . For $0<\varepsilon <v-2$ and $M\geq 1$ , let

$$ \begin{align*}J_n(\sigma_1,\ldots,\sigma_n)=\bigcup\limits_{\ell\geq(\sigma_1\cdots\sigma_n)^{v-2-\varepsilon}} I_{n+1}(\sigma_1,\ldots,\sigma_n,\ell)\end{align*} $$

and $C_n=\{(\sigma _1,\ldots ,\sigma _n)\in \mathbb {N}^{n}:\ \sigma _1\cdots \sigma _n\geq M^{n}\}$ . Then by (2.2),

(3.1) $$ \begin{align} &\ E_{\overline{v}(x)\geq v}(v)\cap\Lambda_{\infty}\nonumber\\ &\quad\subseteq\bigg\{x\in\Lambda_{\infty}:\ \limsup\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log a_1(x)+\cdots+\log a_n(x)}\geq v-2\bigg\}\nonumber\\ &\quad\subseteq\bigcap\limits_{N=1}^{\infty}\bigcup\limits_{n=N}^{\infty}\{x\in[0,1):\ a_{n+1}(x)\geq(a_1(x)\cdots a_n(x))^{v-2-\varepsilon}\ \text{and}\ a_1(x)\cdots a_n(x)\geq M^{n}\}\nonumber\\ &\quad=\bigcap\limits_{N=1}^{\infty}\bigcup\limits_{n=N}^{\infty}\bigcup\limits_{(\sigma_1,\ldots,\sigma_n)\in C_n}J_n(\sigma_1,\ldots,\sigma_n). \end{align} $$

It follows from (2.3) that

(3.2) $$ \begin{align} \Big|\!\bigcup\limits_{\ell\geq(\sigma_1\cdots\sigma_n)^{v-2-\varepsilon}}I_{n+1}(\sigma_1,\ldots,\sigma_n,\ell)\Big| \leq\sum\limits_{\ell\geq(\sigma_1\cdots\sigma_n)^{v-2-\varepsilon}}\frac{1}{\ell^2\cdot(\sigma_1\cdots\sigma_n)^{2}} \leq\frac{1}{(\sigma_1\cdots\sigma_n)^{v-\varepsilon}}. \end{align} $$

We are now in a position to obtain the upper bound of $\dim _{\mathrm {H}}(E_{\overline {v}(x)\geq v}(v)\cap \Lambda )$ . Let $s,M$ be two real numbers satisfying

(3.3) $$ \begin{align} s=\frac{1+2\varepsilon}{v-\varepsilon}\quad \text{and}\quad \frac{1}{M^{\varepsilon}}\cdot\sum\limits_{j=1}^{\infty}\frac{1}{j^{1+\varepsilon}}<\frac{1}{2}. \end{align} $$

Then we deduce from (3.1), (3.2) and (3.3) that

$$ \begin{align*} \mathcal{H}^{s}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda_{\infty}) &\leq \liminf_{n\to\infty}\sum\limits_{n=N}^{\infty}\sum\limits_{(\sigma_1,\ldots,\sigma_n)\in C_n} |J_{n}(\sigma_1,\ldots,\sigma_n)|^{s}\\ &\leq\liminf_{n\to\infty}\sum\limits_{n=N}^{\infty}\sum\limits_{(\sigma_1,\ldots,\sigma_n)\in C_n} \frac{1}{(\sigma_1\cdots\sigma_n)^{1+2\varepsilon}}\\ &\leq\liminf_{n\to\infty}\sum\limits_{n=N}^{\infty}\bigg(\frac{1}{M^{\varepsilon}}\cdot \bigg(\sum\limits_{j=1}^{\infty}\frac{1}{j^{1+\varepsilon}}\bigg)\bigg)^{n}=0. \end{align*} $$

This shows that

$$ \begin{align*}\dim_{\mathrm{H}}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda)=\dim_{\mathrm{H}}(E_{\overline{v}(x)\geq v}(v)\cap\Lambda_{\infty})\leq\frac{1+2\varepsilon}{v-\varepsilon}\end{align*} $$

and letting $\varepsilon \to 0^+$ gives the desired upper bound.

The lower bound of $\dim _{\mathrm {H}}(E(v)\cap \Lambda )$ . Recall that

$$ \begin{align*}E(v)\cap\Lambda=\bigg\{x\in\Lambda:\ \lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}=v-2\bigg\}.\end{align*} $$

To bound $\dim _{\mathrm {H}}(E(v)\cap \Lambda )$ from below, we shall construct a Cantor subset of $E(v)\cap \Lambda $ . Let $s_n=\exp ((v-1)^n)$ and

$$ \begin{align*}\mathbb{F}(\{s_n\}_{n\geq1})=\{x\in[0,1):\ ns_n\leq a_n(x)<(n+1)s_n \mbox{ for all } n\geq1\}.\end{align*} $$

We claim that

(3.4) $$ \begin{align} \mathbb{F}(\{s_n\}_{n\geq1})\subseteq E(v)\cap\Lambda. \end{align} $$

If $x\in \mathbb {F}(\{s_n\}_{n\geq 1})$ , then it is easy to see that $a_n(x)\leq a_{n+1}(x)$ for any $n\geq 1$ . Now it remains to show that

$$ \begin{align*}\lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}=v-2.\end{align*} $$

In fact, we deduce from (2.2) that

$$ \begin{align*} v-2&=\lim\limits_{n\to\infty}\frac{\log(n+1)+(v-1)^{n+1}}{n\log2+\log(n+1)!+(v-1)+\cdots+(v-1)^{n}}\\ &\leq\lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{n\log2+\log a_1(x)+\cdots+\log a_n(x)}\\ &\leq\lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}\leq\lim\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log a_1(x)+\cdots+\log a_n(x)}\\ &\leq\lim\limits_{n\to\infty}\frac{\log(n+2)+(v-1)^{n+1}}{\log n!+(v-1)+\cdots+(v-1)^{n}}=v-2. \end{align*} $$

It follows from (3.4) and Lemma 2.2 that

$$ \begin{align*} \nonumber\dim_{\mathrm{H}}(E(v)\cap\Lambda)\geq\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})&=\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log(n+1)!+ (v-1)^{n+1}}{(v-1)+\cdots+(v-1)^n}}\\ &=\frac{1}{2+(v-2)}=\frac{1}{v}. \end{align*} $$

Proof of Theorem 1.3.

For any $v>2$ , recall that

$$ \begin{align*}E_{\overline{v}(x)\leq v}(v)\cap\Lambda=\bigg\{x\in\Lambda:\ 2+\limsup\limits_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}\leq v\bigg\}.\end{align*} $$

It is clear that $E_{\overline {v}(x)\leq v}(v)\cap \Lambda \subseteq E_{\underline {v}(x)\leq v}(v)\cap \Lambda \subseteq \Lambda $ and so

$$ \begin{align*} \dim_{\mathrm{H}}(E_{\overline{v}(x)\leq v}(v)\cap\Lambda)\leq\dim_{\mathrm{H}}(E_{\underline{v}(x)\leq v}(v)\cap\Lambda)\leq\dim_{\mathrm{H}}\Lambda=\tfrac{1}{2}. \end{align*} $$

Now it suffices to construct a subset of $E_{\overline {v}(x)\leq v}(v)\cap \Lambda $ and then show that the subset is of Hausdorff dimension $1/2$ . Let $s_n=2^n$ and let

$$ \begin{align*}\mathbb{F}(\{s_n\}_{n\geq1})=\{x\in[0,1):\ ns_n\leq a_n(x)<(n+1)s_n \mbox{ for all } n\geq1\}.\end{align*} $$

Then by (2.2), it is easy to prove that

(3.5) $$ \begin{align} \mathbb{F}(\{s_n\}_{n\geq1})\subseteq E_{\overline{v}(x)\leq v}(v)\cap\Lambda. \end{align} $$

Applying Lemma 2.2, we conclude from (3.5) that

(3.6) $$ \begin{align} \dim_{\mathrm{H}}(E_{\overline{v}(x)\leq v}(v)\cap\Lambda)\geq\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})=\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log(n+1)!+ (n+1)\log2}{\frac{1}{2}n(n+1)\log2}}=\frac{1}{2}. \end{align} $$

Proofs of Theorem 1.4 and Corollary 1.5.

We shall divide the proof of Theorem 1.4 into two cases. Recall that

$$ \begin{align*}K(\psi)\cap\Lambda=\bigg\{x\in\Lambda:\ \lim\limits_{n\to\infty}\frac{\log a_1(x)+\cdots+\log a_n(x)}{\psi(n)}=1\bigg\}.\end{align*} $$

Case 1: $\psi (n)/(n\log n)\to \alpha \ (0\leq \alpha <\infty )\ \text {as}\ n\to \infty $ . For the upper bound of $\dim _{\mathrm {H}}(K(\psi )\cap \Lambda )$ , we shall construct a larger set containing $K(\psi )\cap \Lambda $ by using the general form of the Stolz–Cesàro theorem which states that if $\{b_n\}_{n\geq 1}$ and $\{c_n\}_{n\geq 1}$ are two sequences such that $\{c_n\}_{n\geq 1}$ is monotone and unbounded, then

(3.7) $$ \begin{align} \liminf_{n\to\infty}\frac{b_{n+1}-b_n}{c_{n+1}-c_n} \leq \liminf_{n\to\infty}\frac{b_n}{c_n} \leq \limsup_{n\to\infty}\frac{b_n}{c_n} \leq \limsup_{n\to\infty}\frac{b_{n+1}-b_n}{c_{n+1}-c_n}. \end{align} $$

It follows from (3.7) that

$$ \begin{align*} K(\psi)\cap\Lambda&\subseteq\bigg\{x\in\Lambda:\ \liminf\limits_{n\to\infty}\frac{\log a_1(x)+\cdots+\log a_n(x)}{n\log n}=\alpha\bigg\}\\ &\subseteq\bigg\{x\in\Lambda:\ \liminf\limits_{n\to\infty}\frac{\log a_n(x)}{\log n}\leq\alpha\bigg\}. \end{align*} $$

Thus we conclude from Lemma 2.3 that

$$ \begin{align*} \dim_{\mathrm{H}}(K(\psi)\cap\Lambda)\leq \begin{cases} 0,& 0\leq\alpha<1,\cr {(\alpha-1)}/{2\alpha},& \alpha\geq1. \end{cases} \end{align*} $$

To bound $\dim _{\mathrm {H}}(K(\psi )\cap \Lambda )$ from below, we shall construct a suitable Cantor subset of $K(\psi )\cap \Lambda $ . By the upper bound estimate, we have $\dim _{\mathrm {H}}(K(\psi )\cap \Lambda )=0$ for $\alpha =1$ . In what follows, we assume that $\alpha>1$ . Let $s_n=2\lfloor n^{\alpha -1}\rfloor $ and let

$$ \begin{align*} \mathbb{F}(\{s_n\}_{n\geq1})=\{x\in[0,1):\ ns_n\leq a_n(x)<(n+1)s_n \mbox{ for all } n\geq1\}. \end{align*} $$

Then we claim that

(3.8) $$ \begin{align} \mathbb{F}(\{s_n\}_{n\geq1})\subseteq K(\psi)\cap\Lambda. \end{align} $$

On the one hand, since the sequence of positive integers $\{s_n\}_{n\geq 1}$ is nondecreasing, the set $\mathbb {F}(\{s_n\}_{n\geq 1})$ is a subset of $\Lambda $ . On the other hand, for each $x\in \mathbb {F}(\{s_n\}_{n\geq 1})$ ,

$$ \begin{align*} \nonumber\alpha=\lim\limits_{n\to\infty}\frac{\sum_{k=1}^{n}\log(2(k^{\alpha}-k))}{n\log n}&\leq \lim\limits_{n\to\infty} \frac{\log a_1(x)+\cdots+\log a_n(x)}{n\log n}\\ &\leq\lim\limits_{n\to\infty}\frac{\sum_{k=1}^{n}\log(4k^{\alpha})}{n\log n}=\alpha. \end{align*} $$

Applying Lemma 2.2, we deduce from (3.7) that

(3.9) $$ \begin{align} \nonumber\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})=\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log((n+1)!)+ \log s_{n+1}}{\log(s_1 s_2\cdots s_n)}} &\geq\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log(n+2)+ \log s_{n+2}-\log s_{n+1}}{\log s_{n+1}}}\\ &=\frac{1}{2+\frac{2}{\alpha-1}}=\frac{\alpha-1}{2\alpha}. \end{align} $$

Combining this with (3.8) and (3.9) completes the proof.

Case 2: $\psi (n)/(n\log n)\to \infty \ \text {as}\ n\to \infty $ . Note that $\psi (n)$ is a nondecreasing function. For the upper bound of $\dim _{\mathrm {H}}(K(\psi )\cap \Lambda )$ , we deduce from [Reference Fan, Liao, Wang and Wu7, Theorem 1.1] that

$$ \begin{align*}\dim_{\mathrm{H}}(K(\psi)\cap\Lambda)\leq\dim_{\mathrm{H}}K(\psi)=\frac{1}{1+\limsup\limits_{n\to\infty}{\psi(n+1)}/{\psi(n)}}.\end{align*} $$

For the lower bound, the strategy is again to construct a suitable Cantor subset. Let $s_n=2\lfloor \exp (\psi (n)-\psi (n-1))\rfloor $ and set $\psi (0)=0$ for convenience. Let

$$ \begin{align*}\mathbb{F}(\{s_n\}_{n\geq1})=\{x\in[0,1):\ ns_n\leq a_n(x)<(n+1)s_n \mbox{ for all } n\geq1\}.\end{align*} $$

The sequence $\{\psi (n)-\psi (n-1)\}_{n\geq 1}$ is nondecreasing and it is easy to check that

$$ \begin{align*}\mathbb{F}(\{s_n\}_{n\geq1})\subseteq K(\psi)\cap\Lambda.\end{align*} $$

Before proceeding, we remark that

$$ \begin{align*}\lim\limits_{n\to\infty}\frac{\psi(n)}{n\log n}=\infty\quad \text{implies}\quad \limsup\limits_{n\to\infty}\frac{\log((n+1)!)}{\psi(n)}=0.\end{align*} $$

Combining these observations, we deduce from Lemma 2.2 that

$$ \begin{align*} \dim_{\mathrm{H}}(K(\psi)\cap\Lambda)\geq\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})&=\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log((n+1)!)+ \log s_{n+1}}{\log(s_1 s_2\cdots s_n)}}\\ &\geq\frac{1}{2+\limsup\limits_{n\to\infty}\frac{2\log((n+1)!)}{\psi(n)}+ \limsup\limits_{n\to\infty}\frac{\psi(n+1)-\psi(n)}{\psi(n)}}\\ &=\frac{1}{1+\limsup\limits_{n\to\infty}\frac{\psi(n+1)}{\psi(n)}}.\\[-53pt] \end{align*} $$

Proof of Corollary 1.5.

For the case $0\leq \xi <\infty $ , we deduce from the definition of the set $E_{\gamma (x)=\xi }(\xi )$ and (3.7) that

$$ \begin{align*} E_{\gamma(x)=\xi}(\xi)\cap\Lambda&\subseteq\bigg\{x\in\Lambda: \lim\limits_{n\to\infty}\frac{\log a_1(x)+\log a_2(x)+\cdots+\log a_n(x)}{n\log n}=0\bigg\}\\ &\subseteq\bigg\{x\in\Lambda:\ \liminf\limits_{n\to\infty}\frac{\log a_n(x)}{\log n}\leq0\bigg\}. \end{align*} $$

Then by Lemma 2.3,

$$ \begin{align*}\dim_{\mathrm{H}}(E_{\gamma(x)=\xi}(\xi)\cap\Lambda)=0.\end{align*} $$

For the case $\xi =\infty $ , clearly

$$ \begin{align*}\dim_{\mathrm{H}}(E_{\gamma(x)=\xi}(\infty)\cap\Lambda)\leq\dim_{\mathrm{H}}\Lambda=\tfrac{1}{2}.\end{align*} $$

It is easy to prove that the set $\mathbb {F}(\{s_n\}_{n\geq 1})$ constructed in (3.5) is also a subset of $E_{\gamma (x)=\xi }(\infty )\cap \Lambda $ . Combining this with (3.6) gives

$$ \begin{align*} \dim_{\mathrm{H}}(E_{\gamma(x)=\xi}(\infty)\cap\Lambda)\geq\dim_{\mathrm{H}}\mathbb{F}(\{s_n\}_{n\geq1})=\tfrac{1}{2}.\\[-36pt] \end{align*} $$

Footnotes

Kunkun Song is supported by the National Natural Science Foundation of China (Nos. 12201207, 12371072). Zhenliang Zhang is supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202100528) and the Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-MSX1255).

References

Besicovitch, A. S., ‘Sets of fractional dimensions (IV): on rational approximation to real numbers’, J. Lond. Math. Soc. (2) 9(2) (1934), 126131.CrossRefGoogle Scholar
Bugeaud, Y., ‘Sets of exact approximation order by rational numbers’, Math. Ann. 327(1) (2003), 171190.CrossRefGoogle Scholar
Bugeaud, Y., Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Devaney, R. L., An Introduction to Chaotic Dynamical Systems (Chapman and Hall/CRC, Boca Raton, FL, 2022).Google Scholar
Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications (Wiley, New York, 1990).Google Scholar
Fan, A. H., Liao, L. M., Wang, B. W. and Wu, J., ‘On Khintchine exponents and Lyapunov exponents of continued fractions’, Ergodic Theory Dynam. Systems 29 (2009), 73109.CrossRefGoogle Scholar
Fan, A. H., Liao, L. M., Wang, B. W. and Wu, J., ‘On the fast Khintchine spectrum in continued fractions’, Monatsh. Math. 171 (2013), 329340.CrossRefGoogle Scholar
Fang, L. L., Ma, J. H., Song, K. K. and Wu, M., ‘Multifractal analysis of the convergence exponent in continued fractions’, Acta Math. Sci. Ser. B 41 (2021), 18961910.CrossRefGoogle Scholar
Fang, L. L., Ma, J. H., Song, K. K. and Wu, M., ‘Dimensions of certain sets of continued fractions with non-decreasing partial quotients’, Ramanujan J. 60 (2023), 965980.CrossRefGoogle Scholar
Good, I. J., ‘The fractional dimensional theory of continued fractions’, Math. Proc. Cambridge Philos. Soc. 37 (1941), 199228.CrossRefGoogle Scholar
Iosifescu, M. and Kraaikamp, C., Metrical Theory of Continued Fractions (Kluwer Academic Publishers, Dordrecht, 2002).CrossRefGoogle Scholar
Jaffard, S. and Martin, B., ‘Multifractal analysis of the Brjuno function’, Invent. Math. 212 (2018), 109132.CrossRefGoogle Scholar
Jarník, V., ‘Diophantische Approximationen und Hausdorffsches Mass’, Rec. Math. Moscou 36 (1929), 371382.Google Scholar
Jordan, T. and Rams, M., ‘Increasing digit subsystems of infinite iterated function systems’, Proc. Amer. Math. Soc. 140 (2012), 12671279.CrossRefGoogle Scholar
Kesseböhmer, M. and Stratmann, B., ‘Fractal analysis for sets of non-differentiability of Minkowski’s question mark function’, J. Number Theory 128 (2008), 26632686.CrossRefGoogle Scholar
Khintchine, A. Y., ‘Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen’, Math. Ann. 92(1–2) (1924), 115125.CrossRefGoogle Scholar
Khintchine, A. Y., Continued Fractions (University of Chicago Press, Chicago, IL, 1964).Google Scholar
Nicolay, S. and Simons, L., ‘About the multifractal nature of Cantor’s bijection: bounds for the Hölder exponent at almost every irrational point’, Fractals 24 (2016), Article no. 1650014, 9 pages.CrossRefGoogle Scholar
Pollicott, M. and Weiss, H., ‘Multifractal analysis of Lyapunov exponent for continued fraction and Manneville–Pomeau transformations and applications to Diophantine approximation’, Comm. Math. Phys. 207 (1999), 145171.CrossRefGoogle Scholar
Ramharter, G., ‘Eine Bemerkung über gewisse Nullmengen von Kettenbrüchen’, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 1115.Google Scholar
Song, K. K., Tan, X. Y. and Zhang, Z. L., ‘Irrationality exponent and convergence exponent in continued fraction expansions’, Nonlinearity 37(2) (2024), Article no. 025014, 17 pages.CrossRefGoogle Scholar
Sun, Y. and Wu, J., ‘A dimensional result in continued fractions’, Int. J. Number Theory 10 (2014), 849857.CrossRefGoogle Scholar
Tan, B. and Zhou, Q. L., ‘The relative growth rate for partial quotients in continued fractions’, J. Math. Anal. Appl. 478 (2019), 229235.CrossRefGoogle Scholar