Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T07:39:05.279Z Has data issue: false hasContentIssue false

Item-based selection is in good shape in visual compound search: A view from electrophysiology

Published online by Cambridge University Press:  24 May 2017

Thomas Töllner
Affiliation:
Department of Experimental Psychology, Ludwig-Maximilians-Universität München, 80802 Munich, Germany; [email protected]@psy.lmu.dehttp://www.psy.lmu.de/exp/people/ma/toellner/index.htmlhttp://www.psy.lmu.de/exp/people/ma/rangelov/index.html Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
Dragan Rangelov
Affiliation:
Department of Experimental Psychology, Ludwig-Maximilians-Universität München, 80802 Munich, Germany; [email protected]@psy.lmu.dehttp://www.psy.lmu.de/exp/people/ma/toellner/index.htmlhttp://www.psy.lmu.de/exp/people/ma/rangelov/index.html

Abstract

We argue that although the framework put forward by Hulleman & Olivers (H&O) can successfully explain much of visual search behaviour, it appears limited to tasks without precise target identification demands. In particular, we contend that the unit of selection may be larger than a single item in standard detection tasks, whereas the unit may mandatorily be item-based in compound tasks.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bravo, M. J. & Nakayama, K. (1992) The role of attention in different visual-search tasks. Perception and Psychophysics 51:465–72. doi: 10.3758/BF03211642.CrossRefGoogle ScholarPubMed
Cowan, N. (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24:87114. doi: 10.1017/S0140525X01003922.Google Scholar
Egner, T. & Hirsch, J. (2005) Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience 8:1784–90. doi: 10.1038/nn1594.CrossRefGoogle ScholarPubMed
Eimer, M. (1996) The N2pc as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology 99:225–34. doi: 10.1016/0013-4694(96)95711-9.Google Scholar
Luck, S. J. & Hillyard, S. A. (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31:291308. doi: 10.1111/j.1469-8986.1994.tb02218.x.Google Scholar
Mazza, V. & Caramazza, A. (2011) Temporal brain dynamics of multiple object processing: The flexibility of individuation. PLoS ONE 6(2):e17453. doi: 10.1371/journal.pone.0017453.Google Scholar
Mazza, V., Pagano, S. & Caramazza, A. (2013) Multiple object individuation and exact numeration. Journal of Cognitive Neuroscience 25:697705. doi: 10.1162/jocn_a_00349.Google Scholar
Mazza, V., Turatto, M., Umilta, C. & Eimer, M. (2007) Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research 181:531–36. doi: 10.1007/s00221-007-1002-4.Google Scholar
Rangelov, D., Müller, H. J. & Zehetleitner, M. (2013a) Visual search for feature singletons: Multiple mechanisms produce sequence effects in visual search. Journal of Vision 13:22. doi: 10.1167/13.3.22.Google Scholar
Rangelov, D., Töllner, T., Müller, H. J. & Zehetleitner, M. (2013b) What are task-sets: A single, integrated representation or a collection of multiple control representations? Frontiers in Human Neuroscience 7:524. doi: 10.3389/fnhum.2013.00524.CrossRefGoogle ScholarPubMed
Töllner, T., Conci, M. & Müller, H. J. (2015a) Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping 36(3):935–44. doi: 10.1002/hbm.22677.Google Scholar
Töllner, T., Conci, M., Rusch, T. & Müller, H. J. (2013) Selective manipulation of target identification demands in visual search: The role of stimulus contrast in CDA activations. Journal of Vision 13(3):23, 113. doi: 10.1167/13.3.23.Google Scholar
Töllner, T., Eschmann, K., Rusch, T. & Müller, H. J. (2014) Contralateral delay activity reveals dimension-based attentional orienting to locations in visual working memory. Attention Perception, and Psychophysics 76(3):655–62. doi: 10.3758/s13414-014-0636-0.CrossRefGoogle ScholarPubMed
Töllner, T., Mink, M. & Müller, H. J. (2015b) Searching for targets in visual working memory: Investigating a “dimensional feature bundle” (DFB) model. Annals of the New York Academy of Sciences 1339(1):3244. doi: 10.1111/nyas.12703.Google Scholar
Töllner, T., Müller, H. J. & Zehetleitner, M. (2012a) Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex 22(7):1554–63. doi: 10.1093/cercor/bhr231.Google Scholar
Töllner, T., Rangelov, D. & Müller, H. J. (2012b) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990–99. doi: 10.1073/pnas.1206382109.Google Scholar
Töllner, T., Zehetleitner, M., Gramann, K. & Müller, H. J. (2011) Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PLoS ONE 6(1):e16276. doi: 10.1371/journal.pone.0016276.Google Scholar
Vogel, E. K. & Machizawa, M. G. (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–51. doi: 10.1038/nature02447.Google Scholar
Wiegand, I., Töllner, T., Habekost, T., Dyrholm, M., Müller, H. J. & Finke, K. (2014) Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters. Cerebral Cortex 24(8):1967–78. doi: 10.1093/cercor/bht071.Google Scholar
Woods, D. L., Courchesne, E., Hillyard, S. A. & Galambos, R. (1980) Recovery cycles of event-related potentials in multiple detection tasks. Electroencephalography and Clinical Neurophysiology 50:335–47. doi: 10.1016/0013-4694(80)90001-2.Google Scholar
Young, A. H. & Hulleman, J. (2013) Eye movements reveal how task difficulty moulds visual search. Journal of Experimental Psychology: Human Perception and Performance 39:168–90.Google Scholar