Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T22:52:01.776Z Has data issue: false hasContentIssue false

Vadlazarenkovite, Pd8Bi1.5Te1.25As0.25, a new mineral isotypic with mertieite from the Konder massif, Far East, Russia

Published online by Cambridge University Press:  11 November 2024

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey Yu. Stepanov
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, 456317, Miass, Chelyabinsk district, Russia
Vladislav V. Gurzhiy
Affiliation:
Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia
Sergey V. Petrov
Affiliation:
Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia
Andrey G. Pilugin
Affiliation:
LLC “Nornickel Technical Services”, Grazhgdanskiy Prospekt 11, 195 220, Saint-Petersburg, Russia
*
Corresponding author: Anatoly V. Kasatkin; Email: [email protected]

Abstract

The new mineral vadlazarenkovite, ideally Pd8Bi1.5Te1.25As0.25, was discovered in a heavy concentrate obtained from ore samples collected at the Anomal’noe occurrence, Konder alkaline-ultrabasic massif, Khabarovsk Krai, Far East, Russia. It occurs as anhedral grains up to 0.15 × 0.15 mm, intergrown with vysotskite and associated with numerous platinum-group element (PGE) bearing minerals (arsenopalladinite, ezochiite, hollingworthite, kotulskite, norilskite, polarite, skaergaardite, sobolevskite, sperrylite, törnroosite, zvyagintsevite etc.). Vadlazarenkovite is grey, opaque with metallic lustre, has brittle tenacity and uneven fracture. No cleavage and parting are observed. The Vickers’ micro-indentation hardness (VHN, 50 g load) is 424 kg/mm2 (range 406–443, n = 4), corresponding to a Mohs’ hardness of 4.5–5. Dcalc. = 11.947 g/cm3. In reflected light, vadlazarenkovite is white with a pale creamy hue. The bireflectance is weak in air and noticeable in oil immersion. In crossed polars the new mineral exhibits distinct anisotropy in grey tones. The reflectance values for wavelengths recommended by the Commission on Ore Mineralogy of the International Mineralogical Association are (Rmin/Rmax, %): 47.2/47.8 (470 nm), 49.1/50.8 (546 nm), 50.7/52.6 (589 nm) and 52.4/54.6 (650 nm). The chemical composition (wt.%, electron microprobe data, mean of 6 analyses) is: Pd 63.67, Ag 2.21, As 1.27, Sb 0.60, Te 11.26, Pb 2.56, Bi 19.95, total 101.51. The empirical formula calculated on the basis of 11 atoms per formula unit is (Pd7.87Ag0.27)Σ8.14(Bi1.26Te1.16As0.22Pb0.16Sb0.06)Σ2.86. Vadlazarenkovite is trigonal, space group R$\bar 3$c, a = 7.7198(2), c = 43.1237(11) Å, V = 2225.66(13) Å3 and Z = 12. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.308 (55) (1 1 15); 2.262 (100) (2 0 14); 2.232 (70) (3 0 0); and 2.040 (70) (1 1 18). The crystal structure of vadlazarenkovite was refined to R1 = 0.0267 for 761 reflections with Fo > 4σ(Fo). The new mineral is isotypic with mertieite. It honours Professor Vadim Grigorievich Lazarenkov (1933–2014) for his outstanding contributions to the geology, geochemistry and mineralogy of platinum-group elements.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Owen Missen

References

Begizov, V.D. and Zavyalov, E.N. (2016) Ferhodsite (Fe,Rh,Ir,Ni,Cu,Co,Pt)9-xS8 – new mineral from Nizhny Tagil ultramafic complex. Novye Dannye o Mineralakh (New Data on Minerals), 51, 811 [in Russian].Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V., Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Cabri, L.J. (editor) (1981) Platinum-Group Elements: Mineralogy, Geology, Recovery. The Canadian Institute of Mining and Metallurgy, Special Volume, 23, 267 pp.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1997) Platinum-group minerals from the Konder massif, Russian Far East. Mineralogical Record, 28, 97106.Google Scholar
Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W. and Long, X. (2012) Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: petrogenesis and geodynamic significance. Chemical Geology, 294–295, 2641.Google Scholar
Chayka, I.F., Kamenetsky, V.S., Malitch, K.N., Vasil’ev, Y.R., Zelenski, M.E., Abersteiner, A.B. and Kuzmin, I.A. (2023) Behavior of critical metals in cumulates of alkaline ultramafic magmas in the Siberian large igneous province: insights from melt inclusions in minerals. Ore Geology Reviews, 105577.Google Scholar
Dymovich, V.A., Vas’kin, A.F., Opalikhina, E.S., Kislyakov, S.G., Atrachenko, A.F., Romanov, B.I., Zelepugin, V.N., Charov, L.A. and Leontieva, L.Yu. (2012) State Geological Map of Russian Federation, 1:10000000 (3rd edition). Far East series. Sheet O-53 – Nelkan. Explanatory note. VSEGEI Cartographic Factory, 364 p. [in Russian].Google Scholar
Gurevich, D.V. (2023) Conder-Ketkap: two main stages in the formation of gold and PGM deposits. Pp. 106108 in: Scientific and methodological foundations of forecasting, prospecting, assessment of deposits of diamonds, precious and non-ferrous metals (Gurevich, D.V. and A.A, Polonyankin., editors). Abstracts of the XIIth International Scientific and Practical Conference, Moscow, April 11–14, 2023. Moscow, Central Scientific Research Geological Prospecting Institute of Non-Ferrous and Precious Metals [in Russian].Google Scholar
Gurevich, D.V. and Polonyankin, A.A. (2016) Sulfide polymineral Pt-Pd ores of the Konder massif, Khabarovsk region: geological background. Pp. 2746 in: Proceedings of the all-Russian conference with international participation “Problems of geology and exploration of the platinum metals deposits (I scientific readings in memory of prof. V. G. Lazarenkov)”. Mining University, Saint-Petersburg [in Russian].Google Scholar
Gurovich, V.G., Emelyanenko, E.P., Zemlyanukhin, V.N., Karetnikov, A.S., Kvasov, A.I., Lazarenkov, V.G., Malich, K.N., Mochalov, A.G., Prikhod’ko, V.S. and Stepashko, A.A. (1994) Geology, Petrology and Ore Content of the Konder Massif. Moscow, Nauka, 176 p. [in Russian].Google Scholar
Habtoor, A., Ahmed, A.H. and Harbi, H. (2016) Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia. Lithos, 263, 3351.Google Scholar
Holland, T.J.B., Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.Google Scholar
Karimova, O.V., Zolotarev, A.A., Evstigneeva, T.L. and Johanson, B.S. (2018) Mertieite-II, Pd8Sb2.5As0.5, crystal-structure refinement and formula revision. Mineralogical Magazine, 82, S247S257.Google Scholar
Kasatkin, A.V., Biagioni, C., Nestola, F., Agakhanov, A.A., Stepanov, S.Y., Petrov, S.V. and Pilugin, A.G. (2023) Vadlazarenkovite, IMA 2023–040. CNMNC Newsletter 75; Mineralogical Magazine, 87, 955958. doi:10.1180/mgm.2023.76,Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.Google Scholar
Kutyrev, A.V., Sidorov, E.G., Kamenetsky, V.S., Chubarov, V.M., Chayka, I.F. and Abersteiner, A. (2021) Platinum mineralization and geochemistry of the Matysken zoned Ural-Alaskan type complex and related placer (Far East Russia). Ore Geology Reviews, 130, 103947.Google Scholar
Lazarenkov, V.G. and Malich, K.N. (1992) Geochemistry of the ultrabasites of the Konder platiniferous massif. Geochemistry International, 29, 4456.Google Scholar
Lazarenkov, V.G., Malich, K.N. and Sakhyanov, L.O. (1992) Platinum-Metal Mineralization of Zonal Ultrabasic and Komatiite Massifs. Nedra, Leningrad, Russia, 217 pp. [in Russian].Google Scholar
Lazarenkov, V.G., Petrov, S.V. and Talovina, I.V. (2002) Deposits of Platinum Metals. Nedra, Saint-Petersburg, Russia, 298 pp. [in Russian].Google Scholar
Lazarenkov, V.G. and Talovina, I.V. (2001) Geochemistry of Elements of the Platinum Group. Galart Publishing House, Saint-Petersburg, Russia, 266 pp. [in Russian].Google Scholar
Malich, K.N. (1999) Platinum Group Elements in Clinopyroxenite-Dunite Massifs of the East Siberia (Geochemistry, Mineralogy and Genesis). Saint-Petersburg cartographic factory VSEGEI, 296 pp. [in Russian].Google Scholar
Marsh, R.E. (1994) The centrosymmetric-noncentrosymmetric ambiguity: some more examples. Acta Crystallographica, A50, 450455.Google Scholar
Mikhailov, V.V., Stepanov, S.Y., Kozlov, A.V., Petrov, S.V., Palamarchuk, R.S., Shilovskikh, V.V. and Abramova, V.D. (2021) New copper–precious metal occurrence in gabbro of the Serebryansky Kamen massif, Ural platinum belt, Northern Urals. Geology of Ore Deposits, 63, 528555.Google Scholar
Milidragovic, D., Nixon, G.T., Scoates, J.S., Nott, J.A. and Spence, D.W. (2021) Redox-controlled chalcophile element geochemistry of the Polaris Alaskan-type mafic-ultramafic complex, British Columbia, Canada. The Canadian Mineralogist, 59, 16271660.Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2022) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69. European Journal of Mineralogy, 34. 463468.Google Scholar
Mochalov, A.G. (2019) Remarkable platinum minerals of the Konder massif (Khabarovsk Krai, Russia). Mineralogical Almanac, 23, 128 p.Google Scholar
Mochalov, A., Tolkachev, M., Polekhovskiy, Yu and Goryacheva, E. (2007) Bortnikovite, Pd4Cu3Zn, a new mineral species from the unique Konder placer deposit, Khabarovsk krai, Russia. Geologiya Rudnykh Mestorozhdenii (Geology of Ore Deposits), 49, 318327 [in Russian].Google Scholar
Palyanova, G., Kutyrev, A., Beliaeva, T., Shilovskikh, V., Zhegunov, P., Zhitova, E. and Seryotkin, Y. (2023) Pd, Hg-rich gold and compounds of the Au-Pd-Hg System at the Itchayvayam Mafic-Ultramafic Complex (Kamchatka, Russia) and other localities. Minerals, 13, 549.Google Scholar
Pilyugin, A.G. and Bugaev, I.A. (2016) Common problems of geology of copper-platinum-palladium mineralization of the Konder massif, Russian Far East. Pp. 2226 in: Proceedings of the all-Russian conference with international participation “Problems of geology and exploration of the platinum metals deposits (I scientific readings in memory of prof. V. G. Lazarenkov)”. Mining University, Saint-Petersburg [in Russian].Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Rudashevskiy, N.S., Mochalov, A.G., Trubkin, N.V., Gorshkov, A.I., Men’shikov, Y.P. and Shumskaya, N.I. (1984) Konderite Cu3Pb(Rh,Pt,Ir)8S16 – a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 113, 703712 [in Russian].Google Scholar
Rudashevskiy, N.S., Men’shikov, Yu.P., Mochalov, A.G., Trubkin, N.V., Shumskaya, N.I. and Zhdanov, V.V. (1985) Cuprorhodsite CuRh2S4 and cuproiridsite CuIr2S4 – new natural thiospinels of platinum-group elements. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 114, 187195 [in Russian].Google Scholar
Sarah, N. and Schubert, K. (1979) Kristallstruktur von Pd5Bi2. Journal of the Less Common Metals, 63, P7582.Google Scholar
Sazonov, A.M., Romanovsky, A.E., Gertner, I.F., Zvyagina, E.A., Krasnova, T.S., Grinev, O.M. and Kolmakov, Y.V. (2021) Genesis of precious metal mineralization in intrusions of ultramafic, alkaline rocks and carbonatites in the north of the Siberian platform. Minerals, 11, 354.Google Scholar
Shcheka, G.G., Lehmann, B., Gierth, E., Gömann, K. and Wallianos, A. (2004) Macrocrystals of Pt-Fe alloy from the Kondyor PGE placer deposit, Khabarovskiy kray, Russia: trace-element content, mineral inclusions and reaction assemblages. The Canadian Mineralogist, 42, 601617.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Simonov, V.A., Kovyazin, S.V. and V.S, Prikhod’ko. (2011) Genesis of platiniferous massifs in the Southeastern Siberian platform. Petrology, 19, 549567.Google Scholar
Stepanov, S.Yu., Palamarchuk, R.S., Antonov, A.V., Kozlov, A.V., Varlamov, D.A., Khanin, D.A. and Zolotarev, A.A. (2020) Morphology, composition, and ontogenesis of platinum-group minerals in chromitites of zoned clinopyroxenite-dunite massifs of the Middle Urals. Russian Geology and Geophysics, 61, 4767.Google Scholar
Tolstykh, N.D. (2018) Platinum mineralization of the Konder and Inagly massifs. Geosphere Research, 1, 1732 [in Russian].Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wopersnow, W. and Schubert, K. (1976) Kristallstruktur von Pd8Sb3. Journal of Less Common Metals, 48, 7987.Google Scholar
Yakhontova, L.K. and Plusnina, I.I. (1981) The new mineral lazarenkoite. Mineralogicheskiy Zhurnal, 3, 9296 [in Russian with English abs.].Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material 1

Kasatkin et al. supplementary material
Download Kasatkin et al. supplementary material 1(File)
File 132.1 KB
Supplementary material: File

Kasatkin et al. supplementary material 2

Kasatkin et al. supplementary material
Download Kasatkin et al. supplementary material 2(File)
File 780.2 KB