Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T07:03:11.838Z Has data issue: false hasContentIssue false

PARTITIONS OF NATURAL NUMBERS AND THEIR WEIGHTED REPRESENTATION FUNCTIONS

Published online by Cambridge University Press:  27 October 2023

SHUANG-SHUANG LI
Affiliation:
Office of Scientific Research, Anhui Normal University, Wuhu 241002, PR China e-mail: [email protected]
YU-QING SHAN
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China e-mail: [email protected]
XIAO-HUI YAN*
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China
Rights & Permissions [Opens in a new window]

Abstract

For any positive integers $k_1,k_2$ and any set $A\subseteq \mathbb {N}$, let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$. Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$, then there does not exist any set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$ for all sufficiently large integers n, and if $1=k_1<k_2$, then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=1$ for all positive integers n.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathbb {N}$ be the set of all nonnegative integers. For a set $A\subseteq \mathbb {N}$ , let $R_{1}(A,n)$ , $R_{2}(A,n)$ and $R_{3}(A,n)$ denote the number of solutions of $a_1+a_2=n, a_1,a_2\in A$ ; $a_1+a_2=n, a_1, a_2\in A, a_1<a_2$ and $a_1+a_2=n, a_1,a_2\in A, a_1\leq a_2$ , respectively. For $i=1,2,3$ , Sárközy asked whether there exist two sets A and B with $|(A\cup B)\setminus (A\cap B)|=+\infty $ such that $R_{i}(A,n)=R_{i}(B,n)$ for all sufficiently large integers n. We call this problem the Sárközy problem. In 2002, Dombi [Reference Dombi2] proved that the answer is negative for $i=1$ and positive for $i=2$ . For $i=3$ , Chen and Wang [Reference Chen and Wang1] proved that the answer is also positive. In 2004, Lev [Reference Lev3] provided a new proof by using generating functions. Later, Sándor [Reference Sándor5] determined the partitions of $\mathbb {N}$ into two sets with the same representation functions by using generating functions. In 2008, Tang [Reference Tang6] provided a simple proof by using the characteristic function.

In 2012, Yang and Chen [Reference Yang and Chen7] first considered the Sárközy problem with weighted representation functions. For any positive integers $k_1,\ldots ,k_t$ and any set $A\subseteq \mathbb {N}$ , let $R_{k_1,\ldots ,k_t}(A,n)$ be the number of solutions of the equation $n=k_1a_1+\cdots +k_ta_t$ with $a_1,\ldots ,a_t\in A$ . They posed the following question.

Problem 1.1 [Reference Yang and Chen7, Problem 1]

Does there exist a set $A\subseteq \mathbb {N}$ such that $R_{k_1,\ldots ,k_t}(A,n)=R_{k_1,\ldots ,k_t}(\mathbb {N}\setminus A,n)$ for all $n\geq n_0$ ?

They answered this question for $t=2$ and proved the following results.

Theorem 1.2 [Reference Yang and Chen7, Theorem 1].

If $k_1$ and $k_2$ are two integers with $k_2>k_1\geq 2$ and $(k_1,k_2)=1$ , then there does not exist any set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)=R_{k_1,k_2} (\mathbb {N}\setminus A,n)$ for all sufficiently large integers n.

Theorem 1.3 [Reference Yang and Chen7, Theorem 2].

If k is an integer with $k>1$ , then there exists a set $A\subseteq \mathbb {N}$ such that

(1.1) $$ \begin{align} R_{1,k}(A,n)=R_{1,k}(\mathbb{N}\setminus A,n) \end{align} $$

for all integers $n\geq 1$ .

Furthermore, if $0\in A$ , then (1.1) holds for all integers $n\geq 1$ if and only if

$$ \begin{align*}A=\{0\}\bigcup\bigg(\bigcup_{i=0}^{\infty}[(k+1)k^{2i},(k+1)k^{2i+1}-1]\bigg),\end{align*} $$

where $[x,y]=\{n:n\in \mathbb {Z},x\leq n\leq y\}$ .

Later, Li and Ma [Reference Li and Ma4] proved the same results by using generating functions.

Let g be a fixed integer. In this paper, we consider whether there exists a set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$ for all $n\geq n_0$ . First, we answer this problem in the negative if $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$ .

Theorem 1.4. Let g be a fixed integer. If $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$ , then there does not exist any set $A\subseteq \mathbb {N}$ such that

$$ \begin{align*}R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb{N}\setminus A,n)=g\end{align*} $$

for all sufficiently large integers n.

Similar to Theorem 1.3, we seek a set $A\subseteq \mathbb {N}$ such that $R_{1,k}(A,n)-R_{1,k}(\mathbb {N}\setminus A,n)=g$ for all integers $n\geq 1$ . In fact, if $|g|>1$ , then such a set A does not exist by the simple observation that $0\le R_{1,k}(A,n)\le 1$ and $0\le R_{1,k}(\mathbb {N}\setminus A,n)\le 1$ for all positive integers $n<k$ . So we only need to consider the case $g=1$ .

Theorem 1.5. If k is an integer with $k>1$ , then there exists a set $A\subseteq \mathbb {N}$ such that

(1.2) $$ \begin{align} R_{1,k}(A,n)-R_{1,k}(\mathbb{N}\setminus A,n)=1 \end{align} $$

for all integers $n\ge 1$ .

Furthermore, (1.2) holds for all integers $n\geq 1$ if and only if

$$ \begin{align*}A=\{0\}\bigcup\bigg(\bigcup_{i=0}^{\infty}[k^{2i},k^{2i+1}-1]\bigg).\end{align*} $$

2 Proofs

Lemma 2.1. Let $k_1<k_2$ be two positive integers, $\{a(n)\}_{n=-\infty }^{+\infty }$ be a sequence of integers with $a(n)=0$ for $n<0$ and $A\subseteq \mathbb {N}$ . Then the equality

(2.1) $$ \begin{align} R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb{N}\setminus A,n)=a(n)\end{align} $$

holds for all nonnegative integers n if and only if

$$ \begin{align*}\chi_{A}\bigg(\bigg[\frac{n}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{n}{k_2}\bigg]\bigg)=1+\sum_{j=0}^{k_1-1}(a(n-j)-a(n-k_2-j))\end{align*} $$

holds for all nonnegative integers n, where $\chi _A(i)$ is the characteristic function of A, that is, $\chi _A(i) = 1$ if $i\in A$ and $\chi _A(i) = 0$ if $i\notin A$ .

Proof. Let $f(x)$ be the generating function associated with A, that is,

$$ \begin{align*}f(x)=\sum_{a\in A}x^{a}=\sum_{i=0}^{\infty}\chi_A(i)x^i.\end{align*} $$

Then,

$$ \begin{align*} &\sum_{n=0}^\infty (R_{k_1,k_2}(A,n) -R_{k_1,k_2}(\mathbb{N}\setminus A,n))x^n \\ &\quad=f(x^{k_1})f(x^{k_2})-\bigg(\frac{1}{1-x^{k_1}}-f(x^{k_1})\bigg)\bigg(\frac{1}{1-x^{k_2}}-f(x^{k_2})\bigg)\\ &\quad=\frac{f(x^{k_1})}{1-x^{k_2}}+\frac{f(x^{k_2})}{1-x^{k_1}}-\frac{1}{(1-x^{k_1})(1-x^{k_2})}. \end{align*} $$

Let

$$ \begin{align*}p(x)=\sum_{n=0}^{\infty}a(n)x^n.\end{align*} $$

It follows that (2.1) holds for all nonnegative integers n if and only if

$$ \begin{align*}\frac{f(x^{k_1})}{1-x^{k_2}}+\frac{f(x^{k_2})}{1-x^{k_1}}-\frac{1}{(1-x^{k_1})(1-x^{k_2})}=p(x),\end{align*} $$

that is,

(2.2) $$ \begin{align} f(x^{k_1})\frac{1-x^{k_1}}{1-x}+f(x^{k_2})\frac{1-x^{k_2}}{1-x}=\frac{1}{1-x}+(1-x^{k_2})\frac{1-x^{k_1}}{1-x}p(x). \end{align} $$

Note that

$$ \begin{align*} f(x^{k_1})\dfrac{1-x^{k_1}}{1-x}=(1+x+\cdots+x^{k_1-1})\displaystyle\sum_{n=0}^{\infty}\chi_A(n)x^{k_1n}=\displaystyle\sum_{n=0}^{\infty}\chi_{A}\bigg(\bigg[\dfrac{n}{k_1}\bigg]\bigg)\kern0.8pt x^n, \end{align*} $$
$$ \begin{align*} f(x^{k_2})\dfrac{1-x^{k_2}}{1-x}=(1+x+\cdots+x^{k_2-1})\displaystyle\sum_{n=0}^{\infty}\chi_A(n)x^{k_2n}=\displaystyle\sum_{n=0}^{\infty}\chi_{A}\bigg(\bigg[\dfrac{n}{k_2}\bigg]\bigg)\kern0.8pt x^n, \end{align*} $$
$$ \begin{align*} \dfrac{1}{1-x}=\displaystyle\sum_{n=0}^{\infty}x^n \end{align*} $$

and

$$ \begin{align*} (1-x^{k_2})\frac{1-x^{k_1}}{1-x}p(x) &=(1-x^{k_2})(1+x+\cdots+x^{k_1-1})\sum_{n=0}^{\infty}a(n)x^n\\ &=\sum_{n=0}^{\infty}\bigg(\sum_{j=0}^{k_1-1}(a(n-j)-a(n-k_2-j))\bigg)\kern0.8pt x^n. \end{align*} $$

It follows from (2.2) that for all nonnegative integers n,

$$ \begin{align*}\chi_{A}\bigg(\bigg[\frac{n}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{n}{k_2}\bigg]\bigg)=1+\sum_{j=0}^{k_1-1}(a(n-j)-a(n-k_2-j)).\end{align*} $$

This completes the proof of Lemma 2.1.

Lemma 2.2. Let $n_0$ be a positive integer and $k_1<k_2$ be two positive integers with $(k_1,k_2)=1$ and $A\subseteq \mathbb {N}$ be a set with

(2.3) $$ \begin{align} \chi_{A}\bigg(\bigg[\frac{i}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{i}{k_2}\bigg]\bigg)=1 \quad \text{for~all}~i\ge k_1+k_2+n_0. \end{align} $$

If $n\ge k_1+k_2+n_0$ and $\chi _{A}(n)+\chi _{A}(n+1)=1$ , then $k_2\mid n+1$ .

Proof. Since $\chi _{A}(n)+\chi _{A}(n+1)=1$ , it follows that

(2.4) $$ \begin{align} \chi_{A}\bigg(\bigg[\frac{(n+1)k_1-1}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{(n+1)k_1}{k_1}\bigg]\bigg)=\chi_{A}(n)+\chi_{A}(n+1)=1. \end{align} $$

By (2.3),

$$ \begin{align*}\chi_{A}\bigg(\bigg[\frac{(n+1)k_1-1}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{(n+1)k_1-1}{k_2}\bigg]\bigg)=1\end{align*} $$

and

$$ \begin{align*}\chi_{A}\bigg(\bigg[\frac{(n+1)k_1}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{(n+1)k_1}{k_2}\bigg]\bigg)=1.\end{align*} $$

It follows from (2.4) that

$$ \begin{align*}\chi_{A}\bigg(\bigg[\frac{(n+1)k_1-1}{k_2}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{(n+1)k_1}{k_2}\bigg]\bigg)=1.\end{align*} $$

Let t and r be integers with

$$ \begin{align*}(n+1)k_1=tk_2+r, \quad 0\le r\le k_2-1.\end{align*} $$

If $r\ge 1$ , then

$$ \begin{align*}1=\chi_{A}\bigg(\bigg[\frac{(n+1)k_1-1}{k_2}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{(n+1)k_1}{k_2}\bigg]\bigg)=2\chi_{A}(t),\end{align*} $$

which is a contradiction. Hence, $r=0$ and $(n+1)k_1=tk_2$ . Noting that $(k_1,k_2)=1$ , we have $k_2\mid n+1$ . This completes the proof of Lemma 2.2.

Proof of Theorem 1.4.

Let g be an integer and let $k_1,k_2$ be integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$ . Suppose that

(2.5) $$ \begin{align} R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb{N}\setminus A,n)=g \end{align} $$

for all integers $n\ge n_0$ . Let $\{a(n)\}_{n=-\infty }^{+\infty }$ be a sequence of integers with $a(n)=0$ for $n<0$ and $a(n)=g$ for all integers $n\ge n_0$ . It follows from Lemma 2.1 that for all integers $i\ge k_1+k_2+n_0$ ,

(2.6) $$ \begin{align} \chi_{A}\bigg(\bigg[\frac{i}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{i}{k_2}\bigg]\bigg)=1. \end{align} $$

If A is a finite set, then $R_{k_1,k_2}(A,n)=0$ for all sufficiently large integers n, and $R_{k_1,k_2} (\mathbb {N}\setminus A,n)$ cannot be a fixed constant as $n\rightarrow +\infty $ , which implies that (2.5) cannot hold. So A is an infinite set. Similarly, $\mathbb {N}\setminus A$ is also an infinite set.

Since $2\le k_1<k_2$ , it follows that there exists an integer $t>1$ such that $k_2< k_1^{t}$ . Note that both A and $\mathbb {N}\setminus A$ are infinite sets. So there exists an integer $n=k_1^{\alpha }k_2^{\beta }h-1>(k_1+k_2+n_0)^{t+1}$ such that $n\in A$ and $n+1\notin A$ , where $\alpha $ and $\beta $ are nonnegative integers and h is a positive integer with $(h,k_1k_2)=1$ . It follows from (2.6) and Lemma 2.2 that $k_2\mid n+1$ and $\beta \ge 1$ . Since

$$ \begin{align*}(k_1+k_2+n_0)^{t+1}<n<k_1^{\alpha}k_2^{\beta}h<k_1^{t(\alpha+\beta)}h,\end{align*} $$

it follows that $k_1^{\alpha +\beta }>k_1+k_2+n_0$ or $h>k_1+k_2+n_0$ . Hence, for any $0\le i\le \beta $ ,

(2.7) $$ \begin{align} k_1^{\alpha+i}k_2^{\beta-i}h\ge k_1^{\alpha+\beta}h>k_1+k_2+n_0. \end{align} $$

By (2.6),

(2.8) $$ \begin{align} \chi_{A}\bigg(\bigg[\frac{k_1^{\alpha+1}k_2^{\beta}h}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{k_1^{\alpha+1}k_2^{\beta}h}{k_2}\bigg]\bigg)=1 \end{align} $$

and

(2.9) $$ \begin{align} \chi_{A}\bigg(\bigg[\frac{k_1^{\alpha+1}k_2^{\beta}h-k_1}{k_1}\bigg]\bigg)+\chi_{A}\bigg(\bigg[\frac{k_1^{\alpha+1}k_2^{\beta}h-k_1}{k_2}\bigg]\bigg)=1. \end{align} $$

Since $k_1^{\alpha }k_2^{\beta }h=n+1\notin A$ and $k_1^{\alpha }k_2^{\beta }h-1=n\in A$ , it follows from (2.8) and (2.9) that

$$ \begin{align*}\chi_{A}(k_1^{\alpha+1}k_2^{\beta-1}h-1)+\chi_{A}(k_1^{\alpha+1}k_2^{\beta-1}h)=1. \end{align*} $$

By Lemma 2.2, $k_2\mid k_1^{\alpha +1}k_2^{\beta -1}h$ and so $\beta \ge 2$ . Continuing this procedure yields

$$ \begin{align*}\chi_{A}(k_1^{\alpha+\beta}h-1)+\chi_{A}(k_1^{\alpha+\beta}h)=1.\end{align*} $$

By (2.7) and Lemma 2.2, we also have $k_2\mid k_1^{\alpha +\beta }h$ , which is impossible. Hence, there does not exist any set $A\subseteq \mathbb {N}$ such that (2.5) holds for all sufficiently large integers n. This completes the proof of Theorem 1.4.

Proof of Theorem 1.5.

Suppose that there is a set A such that

(2.10) $$ \begin{align} R_{1,k}(A,n)-R_{1,k}(\mathbb{N}\setminus A,n)=1 \end{align} $$

for all integers $n\ge 1$ . Then $0 \in A$ and (2.10) holds for all integers $n\ge 0$ . Let $\{a(n)\}_{n=-\infty }^{+\infty }$ be a sequence of integers with $a(n)=0$ for $n<0$ and $a(n)=1$ for $n\ge 0$ . By Lemma 2.1,

$$ \begin{align*} R_{1,k}(A,n)-R_{1,k}(\mathbb{N}\setminus A,n)=a(n)\end{align*} $$

for all nonnegative integers n if and only if

$$ \begin{align*}\chi_{A}(n)+\chi_{A}\bigg(\bigg[\frac{n}{k}\bigg]\bigg)=1+a(n)-a(n-k)\end{align*} $$

for all nonnegative integers n, that is,

$$ \begin{align*} \chi_{A}(n)+\chi_{A}(0) & =2 \quad\text{for}~0\le n\le k-1, \\ \chi_{A}(n)+\chi_{A}\bigg(\bigg[\frac{n}{k}\bigg]\bigg) & =1 \quad\text{for}~n\ge k. \end{align*} $$

Thus,

$$ \begin{align*} A=\{0\}\bigcup\bigg(\bigcup_{i=0}^{\infty}[k^{2i},k^{2i+1}-1]\bigg).\\[-45pt] \end{align*} $$

Footnotes

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12101009 and 12371005), Anhui Provincial Natural Science Foundation (Grant No. 2108085QA02) and University Natural Science Research Project of Anhui Province (Grant No. 2022AH050171).

References

Chen, Y.-G. and Wang, B., ‘On additive properties of two special sequences’, Acta Arith. 110 (2003), 299303.10.4064/aa110-3-7CrossRefGoogle Scholar
Dombi, G., ‘Additive properties of certain sets’, Acta Arith. 103 (2002), 137146.10.4064/aa103-2-3CrossRefGoogle Scholar
Lev, V. F., ‘Reconstructing integer sets from their representation functions’, Electron. J. Combin. 11 (2004), Article no. R78.10.37236/1831CrossRefGoogle Scholar
Li, Y.-L. and Ma, W.-X., ‘Partitions of natural numbers with the same weighted representation functions’, Colloq. Math. 159 (2020), 15.10.4064/cm7605-11-2018CrossRefGoogle Scholar
Sándor, C., ‘Partitions of natural numbers and their representation functions’, Integers 4 (2004), Article no. A18.Google Scholar
Tang, M., ‘Partitions of the set of natural numbers and their representation functions’, Discrete Math. 308 (2008), 26142616.10.1016/j.disc.2007.06.006CrossRefGoogle Scholar
Yang, Q.-H. and Chen, Y.-G., ‘Partitions of natural numbers with the same weighted representation functions’, J. Number Theory 132 (2012), 30473055.10.1016/j.jnt.2012.06.005CrossRefGoogle Scholar