Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T12:42:04.618Z Has data issue: false hasContentIssue false

COVID-19 host genetics and ABO blood group susceptibility

Published online by Cambridge University Press:  10 January 2023

David Ellinghaus*
Affiliation:
Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
*
Author for correspondence: David Ellinghaus, Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Twenty-five susceptibility loci for SARS-CoV-2 infection and/or COVID-19 disease severity have been identified in the human genome by genome-wide association studies, and the most frequently replicated genetic findings for susceptibility are genetic variants at the ABO gene locus on chromosome 9q34.2, which is supported by the association between ABO blood group distribution and COVID-19. The ABO blood group effect appears to influence a variety of disease conditions and pathophysiological mechanisms associated with COVID-19. Transmission models for SARS-CoV-2 combined with observational public health and genome-wide data from patients and controls, as well as receptor binding experiments in cell lines and human samples, indicate that there may be a reduction or slowing of infection events by up to 60% in certain ABO blood group constellations of index and contact person in the early phase of a SARS-CoV-2 outbreak. The strength of the ABO blood group effect on reducing infection rates further depends on the distribution of the ABO blood groups in the respective population and the proportion of blood group O in that population. To understand in detail the effect of ABO blood groups on COVID-19, further studies are needed in relation to different demographic characteristics, but also in relation to recent data on reinfection with new viral variants and in the context of the human microbiome.

Topics structure

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial licence (http://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use.
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Impact statement

The contribution of host genetic factors to COVID-19 has been investigated through genome-wide association studies (GWAS), as genetic targets generally double the success rate of drugs in clinical development. Researchers from around the world have teamed up and found 25 susceptibility loci, primarily related to immune response, but also to the ABO blood group system (with the most commonly replicated locus, the ABO gene), that influence either susceptibility to infection and/or progression of COVID-19. These genetic discoveries can now help suggest specific targets for drug reuse and new drug development. They also increase our knowledge of COVID-19 biology and our understanding of genetic risk factors for SARS-CoV-2 transmission. Some of the genes, for example, IFNAR2 and ACE2, encode proteins for which drug candidates are currently being tested in clinical trials. Strikingly, almost all independent (genetic and nongenetic) study data suggest that blood group A is associated with a higher probability of SARS-CoV-2 infection and blood group O with a lower probability, which is also reflected in the increased and decreased numbers of severely ill COVID-19 patients with blood group A and O, respectively. Model calculations show that the relative probability of SARS-CoV-2 transmission between an infected index person and an ABO-incompatible contact is reduced by an average of 40% in certain situations (ranging from 20 and 55% depending on ABO blood group frequency, estimated risk effect in different countries and the proportion of the population infected), which is confirmed by independent studies in couples. Current GWAS studies on refined COVID-19 symptoms such as loss of smell or taste and in the context of different demographic characteristics, but also in the context of recent data on reinfection with new viral variants and the human microbiome, are likely to help elucidate the underlying biology and provide precise and personalized treatments.

Introduction

The COVID-19 pandemic is a global crisis that has caused severe disruption in health systems and the global economy. Tremendous efforts have been made to contain the spread of SARS-CoV-2 and immunize the world’s population against the virus. At the same time, extensive research has been conducted to identify risk factors to protect vulnerable groups and to find new targets for drug development for severely ill individuals. To this end, a series of genome-wide association studies (GWAS) and genome-wide meta-analyses (GWMA) have been conducted in large patient populations to determine genetic determinants in the human genome of susceptibility to infection and disease severity in COVID-19. After two early blood group studies from hospitals in Wuhan and Shenzhen in China (which both first appeared on a pre-print server in March 2020 and were later published in peer-reviewed journals (Zhang et al., Reference Zhang, Huang, Xia, Fan, Zhu, Zhu, Zhang, Tao, Cheng and Chen2020; Zhao et al., Reference Zhao, Yang, Huang, Li, Gu, Lu, Zhang, Liu, Liu, Liu, He, Sun, Wei, Yang, Wang, Zhang, Zhou, Xing and Wang2021)) showed a statistical correlation of ABO blood group distributions with the incidence of COVID-19 compared to uninfected controls, nearly all (hypothesis-free) COVID-19 GWAS and GWMA reported associations between genetic variants at the ABO gene locus and ABO blood group distribution and susceptibility to SARS-CoV-2 infection and/or severity of COVID-19. The statistical observation that ABO blood groups and thus blood group antigens, in general, can increase or decrease host susceptibility to infection, including viral infections with norovirus, rotavirus, HIV, SARS-CoV-1 and influenza, is not a new finding, although the underlying mechanisms are not clearly known (Cooling, Reference Cooling2015). Anthropological studies indicated that the geographical distribution of human blood groups also reflects the susceptibility of populations with certain blood groups to plague, cholera, smallpox, malaria and other infectious diseases (Berger et al., Reference Berger, Young and Edberg1989). A well-known example is the increased host resistance to Plasmodium falciparum infection (malaria) in blood group 0 carriers in many African and Asian populations (Degarege et al., Reference Degarege, Gebrezgi, Ibanez, Wahlgren and Madhivanan2019), and it is estimated that 25% of the risk for malaria severity in Africa is determined by genetic factors of the human genome (Mackinnon et al., Reference Mackinnon, Mwangi, Snow, Marsh and Williams2005). In the following sections, I summarize which susceptibility loci for SARS-CoV-2 infection and/or COVID-19 disease severity have been identified to date through large-scale genome-wide analyses and what the genetic variants at the ABO gene locus and the ABO blood group associations might have to do with SARS-CoV-2 infection or severity in COVID-19. I will then review the current models of SARS-CoV-2 transmission in the context of ABO blood groups for validity based on study results and briefly look at the distribution of ABO blood groups in different populations worldwide to illustrate, what impact the statistical finding that blood group O is protective against infection and/or the severity of COVID-19 disease might have on the transmissibility of SARS-CoV-2 at the population level and at the individual level, and when blood group O might offer a real advantage over the other blood groups.

COVID-19 susceptibility loci from genome-wide studies

Of the 25 susceptibility loci with genome-wide significance identified to date in the human genome (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; COVID-19 Host Genetics Initiative, 2021; Pairo-Castineira et al., Reference Pairo-Castineira, Clohisey, Klaric, Bretherick, Rawlik, Pasko, Walker, Parkinson, Fourman, Russell, Furniss, Richmond, Gountouna, Wrobel, Harrison, Wang, Wu, Meynert, Griffiths, Oosthuyzen, Kousathanas, Moutsianas, Yang, Zhai, Zheng, Grimes, Beale, Millar, Shih, Keating, Zechner, Haley, Porteous, Hayward, Yang, Knight, Summers, Shankar-Hari, Klenerman, Turtle, Ho, Moore, Hinds, Horby, Nichol, Maslove, Ling, McAuley, Montgomery, Walsh, Pereira, Renieri, Gen, Investigators, Initiative, Me, Investigators, Gen, Shen, Ponting, Fawkes, Tenesa, Caulfield, Scott, Rowan, Murphy, PJM, Semple, Law, Vitart, Wilson and Baillie2021; Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021; Wu et al., Reference Wu, Ding, Li, Liu, Cheng, He, Xiao, Wu, Hou, Jiang, Long, Wang, Liu, Qu, Shi, Jiang, Mo, Ding, Fu, Han, Huo, Zeng, Zhou, Zhang, Ke, Xu, Ni, Shao, Wang, Liu, Li, Jin, Zheng, Wang, Liu, Li, Liu, Peng, Xu, Lin, Gao, Shi, Geng, Mu, Yan, Wang, Wu, Hao, Cheng, Qiu, Guo, Li, Chen, Sun, Lin, Jin, Wang, Sun and Wang2021; COVID-19 Host Genetics Initiative, 2022; Cruz et al., Reference Cruz, Almeida, Heredia, Quintela, Ceballos, Pita, Lorenzo-Salazar, Gonzalez-Montelongo, Gago-Dominguez, Porras, Castano, Nevado, Aguado, Aguilar, Aguilera-Albesa, Almadana, Almoguera, Alvarez, Andreu-Bernabeu, Arana-Arri, Arango, Arranz, Artiga, Baptista-Rosas, Barreda-Sanchez, Belhassen-Garcia, Bezerra, Bezerra, Boix-Palop, Brion, Brugada, Bustos, Calderon, Carbonell, Castano, Castelao, Conde-Vicente, Cordero-Lorenzana, Cortes-Sanchez, Corton, Darnaude, De Martino-Rodriguez, Campo-Perez, Bustamante, Dominguez-Garrido, Luchessi, Eiros, Sanabria, Farinas, Fernandez-Robelo, Fernandez-Rodriguez, Fernandez-Villa, Gil-Fournier, Gomez-Arrue, Alvarez, Quiros, Gonzalez-Penas, Gutierrez-Bautista, Herrero, Herrero-Gonzalez, Jimenez-Sousa, Lattig, Borja, Lopez-Rodriguez, Mancebo, Martin-Lopez, Martin, Martinez-Nieto, Martinez-Lopez, Martinez-Resendez, Martinez-Perez, Mazzeu, Macias, Minguez, Cuerda, Silbiger, Oliveira, Ortega-Paino, Parellada, Paz-Artal, Santos, Perez-Matute, Perez, Perez-Tomas, Perucho, Pinsach-Abuin, Pompa-Mera, Porras-Hurtado, Pujol, Leon, Resino, Fernandes, Rodriguez-Ruiz, Rodriguez-Artalejo, Rodriguez-Garcia, Ruiz-Cabello, Ruiz-Hornillos, Ryan, Soria, Souto, Tamayo, Tamayo-Velasco, Taracido-Fernandez, Teper, Torres-Tobar, Urioste, Valencia-Ramos, Yanez, Zarate, Nakanishi, Pigazzini, Degenhardt, Butler-Laporte, Maya-Miles, Bujanda, Bouysran, Palom, Ellinghaus, Martinez-Bueno, Rolker, Amitrano, Roade, Fava, Spinner, Prati, Bernardo, Garcia, Darcis, Fernandez-Cadenas, Holter, Banales, Frithiof, Duga, Asselta, Pereira, Romero-Gomez, Nafria-Jimenez, Hov, Migeotte, Renieri, Planas, Ludwig, Buti, Rahmouni, Alarcon-Riquelme, Schulte, Franke, Karlsen, Valenti, Zeberg, Richards, Ganna, Boada, Rojas, Ruiz, Sanchez, Real, Guillen-Navarro, Ayuso, Gonzalez-Neira, Riancho, Rojas-Martinez, Flores, Lapunzina and Carracedo2022; Degenhardt et al., Reference Degenhardt, Ellinghaus, Juzenas, Lerga-Jaso, Wendorff, Maya-Miles, Uellendahl-Werth, ElAbd, Ruhlemann, Arora, Ozer, Lenning, Myhre, Vadla, Wacker, Wienbrandt, Ortiz, Salazar, Chercoles, Palom, Ruiz, Garcia-Fernandez, Blanco-Grau, Mantovani, Zanella, Holten, Mayer, Bandera, Cherubini, Protti, Aghemo, Gerussi, Ramirez, Braun, Nebel, Barreira, Lleo, Teles, Kildal, Biondi, Caballero-Garralda, Ganna, Gori, Gluck, Lind, Tanck, Hinney, Nolla, Fracanzani, Peschuck, Cavallero, Dyrhol-Riise, Ruello, Julia, Muscatello, Pesenti, Voza, Rando-Segura, Solier, Schmidt, Cortes, Mateos, Nafria-Jimenez, Schaefer, Jensen, Bellinghausen, Maj, Ferrando, Horra, Quereda, Skurk, Thibeault, Scollo, Herr, Spinner, Gassner, Lange, Hu, Paccapelo, Lehmann, Angelini, Cappadona, Azuure, Bianco, Cea, Sancho, Hoff, Galimberti, Prati, Haschka, Jimenez, Pestana, Toapanta, Muniz-Diaz, Azzolini, Sandoval, Binatti, Scarpini, Helbig, Casalone, Urrechaga, Paraboschi, Pontali, Reverter, Calderon, Navas, Solligard, Contro, Arana-Arri, Aziz, Garcia, Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Kurth, Blasi, Malvestiti, Medrano, Mesonero, Rodriguez-Frias, Hanses, Muller, Hemmrich-Stanisak, Bellani, Grasselli, Pezzoli, Costantino, Albano, Cardamone, Bellelli, Citerio, Foti, Lamorte, Matullo, Baselli, Kurihara, Neb, My, Kurth, Hernandez, Pink, Rojas, Galvan-Femenia, Holter, Afset, Heyckendorf, Kassens, Damas, Rybniker, Altmuller, Ampuero, Martin, Erdmann, Banales, Badia, Dopazo, Schneider, Bergan, Barretina, Walter, Quero, Goikoetxea, Delgado, Guerrero, Fazaal, Kraft, Schroder, Risnes, Banasik, Muller, Gaede, Garcia-Etxebarria, Tonby, Heggelund, Izquierdo-Sanchez, Bettini, Sumoy, Sander, Lippert, Terranova, Nkambule, Knopp, Gustad, Garbarino, Santoro, Tellez, Roade, Ostadreza, Intxausti, Kogevinas, Riveiro-Barciela, Berger, Schaefer, Niemi, Gutierrez-Stampa, Carrabba, Figuera Basso, Valsecchi, Hernandez-Tejero, Vehreschild, Manunta, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Grimsrud, Cornberg, Nothen, Marquie, Castoldi, Cordioli, Cecconi, D’Amato, Augustin, Tomasi, Boada, Dreher, Seilmaier, Joannidis, Wittig, Mazzocco, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Ayo, Blay, Chueca, Montano, Braun, Ludwig, Marx, Martinez, Cornely, Witzke, Palmieri, Pa Study, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Espana, Hoffmann, Rosenstiel, Schommers, Suwalski, Pablo, Ferrer, Bals, Gualtierotti, Gallego-Duran, Nieto, Carpani, Morilla, Badalamenti, Haider, Ciesek, May, Bombace, Marsal, Pigazzini, Klein, Pelusi, Wilfling, Bosari, Volland, Brunak, Raychaudhuri, Schreiber, Heilmann-Heimbach, Aliberti, Ripke, Dudman, Wesse, Zheng, Bahmer, Eggermann, Illig, Brenner, Pumarola, Feldt, Folseraas, Cejudo, Landmesser, Protzer, Hehr, Rimoldi, Monzani, Skogen, Keitel, Kopfnagel, Friaza, Andrade, Moreno, Albrecht, Peter, Poller, Farre, Yi, Wang, Khodamoradi, Karadeniz, Latiano, Goerg, Bacher, Koehler, Tran, Zoller, Schulte, Heidecker, Ludwig, Fernandez, Romero-Gomez, Albillos, Invernizzi, Buti, Duga, Bujanda, Hov, Lenz, Asselta, Cid, Valenti, Karlsen, Caceres and Franke2022; Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022; Namkoong et al., Reference Namkoong, Edahiro, Takano, Nishihara, Shirai, Sonehara, Tanaka, Azekawa, Mikami, Lee, Hasegawa, Okudela, Okuzaki, Motooka, Kanai, Naito, Yamamoto, Wang, Saiki, Ishihara, Matsubara, Hamamoto, Hayashi, Yoshimura, Tachikawa, Yanagita, Hyugaji, Shimizu, Katayama, Kato, Morita, Takahashi, Harada, Naito, Hiki, Matsushita, Takagi, Aoki, Nakamura, Harada, Sasano, Kabata, Masaki, Kamata, Ikemura, Chubachi, Okamori, Terai, Morita, Asakura, Sasaki, Morisaki, Uwamino, Nanki, Uchida, Uno, Nishimura, Ishiguro, Isono, Shibata, Matsui, Hosoda, Takano, Nishida, Kobayashi, Takaku, Takayanagi, Ueda, Tada, Miyawaki, Yamamoto, Yoshida, Hayashi, Nagasaka, Arai, Kaneko, Sasaki, Tagaya, Kawana, Arimura, Takahashi, Anzai, Ito, Endo, Uchimura, Miyazaki, Honda, Tateishi, Tohda, Ichimura, Sonobe, Sassa, Nakajima, Nakano, Nakajima, Anan, Arai, Kurihara, Harada, Nishio, Ueda, Azuma, Saito, Sado, Miyazaki, Sato, Haruta, Nagasaki, Yasui, Hasegawa, Mutoh, Kimura, Sato, Takei, Hagimoto, Noguchi, Yamano, Sasano, Ota, Nakamori, Yoshiya, Saito, Yoshihara, Wada, Iwamura, Kanayama, Maruyama, Yoshiyama, Ohta, Kokuto, Ogata, Tanaka, Arakawa, Shimoda, Osawa, Tateno, Hase, Yoshida, Suzuki, Kawada, Horinouchi, Saito, Mitamura, Hagihara, Ochi, Uchida, Baba, Arai, Ogura, Takahashi, Hagiwara, Nagao, Konishi, Nakachi, Murakami, Yamada, Sugiura, Sano, Matsumoto, Kimura, Ono, Baba, Suzuki, Nakayama, Masuzawa, Namba, Suzuki, Naito, Liu, Takuwa, Sugihara, Wing, Sakakibara, Hizawa, Shiroyama, Miyawaki, Kawamura, Nakayama, Matsuo, Maeda, Nii, Noda, Niitsu, Adachi, Enomoto, Amiya, Hara, Yamaguchi, Murakami, Kuge, Matsumoto, Yamamoto, Yamamoto, Yoneda, Kishikawa, Yamada, Kawabata, Kijima, Takagaki, Sasa, Ueno, Suzuki, Takemoto, Eguchi, Fukusumi, Imai, Fukushima, Kishima, Inohara, Tomono, Kato, Takahashi, Matsuda, Hirata, Takeda, Koh, Manabe, Funatsu, Ito, Fukui, Shinozuka, Kohashi, Miyazaki, Shoko, Kojima, Adachi, Ishikawa, Takahashi, Inoue, Hirano, Kobayashi, Takaoka, Watanabe, Miyazawa, Kimura, Sado, Sugimoto, Kamiya, Kuwahara, Fujiwara, Matsunaga, Sato, Okada, Hirai, Kawashima, Narita, Niwa, Sekikawa, Nishi, Nishitsuji, Tani, Suzuki, Nakatsumi, Ogura, Kitamura, Hagiwara, Murohashi, Okabayashi, Mochimaru, Nukaga, Satomi, Oyamada, Mori, Baba, Fukui, Odate, Mashimo, Makino, Yagi, Hashiguchi, Kagyo, Shiomi, Fuke, Saito, Tsuchida, Fujitani, Takita, Morikawa, Yoshida, Izumo, Inomata, Kuse, Awano, Tone, Ito, Nakamura, Hoshino, Maruyama, Ishikura, Takata, Odani, Amishima, Hattori, Shichinohe, Kagaya, Kita, Ohta, Sakagami, Koshida, Hayashi, Shimizu, Kozu, Hiranuma, Gon, Izumi, Nagata, Ueda, Taki, Hanada, Kawamura, Ichikado, Nishiyama, Muranaka, Nakamura, Hashimoto, Wakahara, Koji, Omote, Ando, Kodama, Kaneyama, Maeda, Kuraki, Matsumoto, Yokote, Nakada, Abe, Oshima, Shimada, Harada, Takahashi, Ono, Sakurai, Shibusawa, Kimizuka, Kawana, Sano, Watanabe, Suematsu, Sageshima, Yoshifuji, Ito, Takahashi, Ishioka, Nakamura, Masuda, Wakabayashi, Watanabe, Ueda, Nishikawa, Chihara, Takeuchi, Onoi, Shinozuka, Sueyoshi, Nagasaki, Okamoto, Ishihara, Shimo, Tokunaga, Kusaka, Ohba, Isogai, Ogawa, Inoue, Fukuyama, Eriguchi, Yonekawa, Kan, Matsumoto, Kanaoka, Ihara, Komuta, Inoue, Chiba, Yamagata, Hiramatsu, Kai, Asano, Oguma, Ito, Hashimoto, Yamasaki, Kasamatsu, Komase, Hida, Tsuburai, Oyama, Takada, Kanda, Kitagawa, Fukuta, Miyake, Yoshida, Ogura, Abe, Kono, Togashi, Takoi, Kikuchi, Ogawa, Ogata, Ishihara, Kanehiro, Ozaki, Fuchimoto, Wada, Fujimoto, Nishiyama, Terashima, Beppu, Yoshida, Narumoto, Nagai, Ooshima, Motegi, Umeda, Miyagawa, Shimada, Endo, Ohira, Watanabe, Inoue, Igarashi, Sato, Sagara, Tanaka, Ohta, Kimura, Shibata, Tanino, Nikaido, Minemura, Sato, Yamada, Hashino, Shinoki, Iwagoe, Takahashi, Fujii, Kishi, Kanai, Imamura, Yamashita, Yatomi, Maeno, Hayashi, Takahashi, Kuramochi, Kamimaki, Tominaga, Ishii, Utsugi, Ono, Tanaka, Kashiwada, Fujita, Saito, Seike, Watanabe, Matsuse, Kodaka, Nakano, Oshio, Hirouchi, Makino, Egi, Omae, Nannya, Ueno, Katayama, Ai, Fukui, Kumanogoh, Sato, Hasegawa, Tokunaga, Ishii, Koike, Kitagawa, Kimura, Imoto, Miyano, Ogawa, Kanai, Fukunaga and Okada2022; Roberts et al., Reference Roberts, Partha, Rhead, Knight, Park, Coignet, Zhang, Berkowitz, Turrisini, Gaddis, McCurdy, Pavlovic, Ruiz, Sass, Ancestry, Baltzell, Guturu, Girshick, Ball, Hong and Rand2022; Table 1), locus 9q34.2 with the ABO gene stands out because the genetic association there points directly to the ABO gene and because the risk/protective effect inferred from the ABO blood group distribution among cases and controls is very similar between genome-wide and blood group candidate studies. The genetic variants at the ABO gene locus represent the statistically strongest genetic associations in the so-called Manhattan P value association plots of the GWAS studies (Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021) (or sometimes the second strongest next to the association signal at locus 3p21.31 (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022), depending on whether one is testing for disease severity or infection). Moreover, it was shown that the genetic association at the ABO locus cannot be explained by COVID-19 comorbidities, that is, potential confounding factors (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022). It should be noted that most candidate genes listed in Table 1 from the respective publications, with the exception of ABO and ACE2 (here a rare variant association upstream of the angiotensin-converting enzyme 2 gene, the primary cell entry receptor for SARS-CoV-2, was identified (Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022) which, however, describes a much smaller proportion of the heritability (So et al., Reference So, Gui, Cherny and Sham2011) for COVID-19 susceptibility compared to the ABO association in the general population due to its rare frequency and its comparable effect size with those of the common variants), are so far predominantly candidate genes that need to be investigated in functional studies for a biological effect. Indeed, most of the loci listed in Table 1 span a large number of genes, so that many genes at a susceptibility locus may be candidate susceptibility genes. An important observation about the ABO locus is that the ABO association signal has been replicated in almost all large COVID-19 GWAS studies, making it the most replicated locus for COVID-19 (along with 3p21.31). Multiple genetic variants have been identified for the ABO locus (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; COVID-19 Host Genetics Initiative, 2021; Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021; Cruz et al., Reference Cruz, Almeida, Heredia, Quintela, Ceballos, Pita, Lorenzo-Salazar, Gonzalez-Montelongo, Gago-Dominguez, Porras, Castano, Nevado, Aguado, Aguilar, Aguilera-Albesa, Almadana, Almoguera, Alvarez, Andreu-Bernabeu, Arana-Arri, Arango, Arranz, Artiga, Baptista-Rosas, Barreda-Sanchez, Belhassen-Garcia, Bezerra, Bezerra, Boix-Palop, Brion, Brugada, Bustos, Calderon, Carbonell, Castano, Castelao, Conde-Vicente, Cordero-Lorenzana, Cortes-Sanchez, Corton, Darnaude, De Martino-Rodriguez, Campo-Perez, Bustamante, Dominguez-Garrido, Luchessi, Eiros, Sanabria, Farinas, Fernandez-Robelo, Fernandez-Rodriguez, Fernandez-Villa, Gil-Fournier, Gomez-Arrue, Alvarez, Quiros, Gonzalez-Penas, Gutierrez-Bautista, Herrero, Herrero-Gonzalez, Jimenez-Sousa, Lattig, Borja, Lopez-Rodriguez, Mancebo, Martin-Lopez, Martin, Martinez-Nieto, Martinez-Lopez, Martinez-Resendez, Martinez-Perez, Mazzeu, Macias, Minguez, Cuerda, Silbiger, Oliveira, Ortega-Paino, Parellada, Paz-Artal, Santos, Perez-Matute, Perez, Perez-Tomas, Perucho, Pinsach-Abuin, Pompa-Mera, Porras-Hurtado, Pujol, Leon, Resino, Fernandes, Rodriguez-Ruiz, Rodriguez-Artalejo, Rodriguez-Garcia, Ruiz-Cabello, Ruiz-Hornillos, Ryan, Soria, Souto, Tamayo, Tamayo-Velasco, Taracido-Fernandez, Teper, Torres-Tobar, Urioste, Valencia-Ramos, Yanez, Zarate, Nakanishi, Pigazzini, Degenhardt, Butler-Laporte, Maya-Miles, Bujanda, Bouysran, Palom, Ellinghaus, Martinez-Bueno, Rolker, Amitrano, Roade, Fava, Spinner, Prati, Bernardo, Garcia, Darcis, Fernandez-Cadenas, Holter, Banales, Frithiof, Duga, Asselta, Pereira, Romero-Gomez, Nafria-Jimenez, Hov, Migeotte, Renieri, Planas, Ludwig, Buti, Rahmouni, Alarcon-Riquelme, Schulte, Franke, Karlsen, Valenti, Zeberg, Richards, Ganna, Boada, Rojas, Ruiz, Sanchez, Real, Guillen-Navarro, Ayuso, Gonzalez-Neira, Riancho, Rojas-Martinez, Flores, Lapunzina and Carracedo2022; Degenhardt et al., Reference Degenhardt, Ellinghaus, Juzenas, Lerga-Jaso, Wendorff, Maya-Miles, Uellendahl-Werth, ElAbd, Ruhlemann, Arora, Ozer, Lenning, Myhre, Vadla, Wacker, Wienbrandt, Ortiz, Salazar, Chercoles, Palom, Ruiz, Garcia-Fernandez, Blanco-Grau, Mantovani, Zanella, Holten, Mayer, Bandera, Cherubini, Protti, Aghemo, Gerussi, Ramirez, Braun, Nebel, Barreira, Lleo, Teles, Kildal, Biondi, Caballero-Garralda, Ganna, Gori, Gluck, Lind, Tanck, Hinney, Nolla, Fracanzani, Peschuck, Cavallero, Dyrhol-Riise, Ruello, Julia, Muscatello, Pesenti, Voza, Rando-Segura, Solier, Schmidt, Cortes, Mateos, Nafria-Jimenez, Schaefer, Jensen, Bellinghausen, Maj, Ferrando, Horra, Quereda, Skurk, Thibeault, Scollo, Herr, Spinner, Gassner, Lange, Hu, Paccapelo, Lehmann, Angelini, Cappadona, Azuure, Bianco, Cea, Sancho, Hoff, Galimberti, Prati, Haschka, Jimenez, Pestana, Toapanta, Muniz-Diaz, Azzolini, Sandoval, Binatti, Scarpini, Helbig, Casalone, Urrechaga, Paraboschi, Pontali, Reverter, Calderon, Navas, Solligard, Contro, Arana-Arri, Aziz, Garcia, Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Kurth, Blasi, Malvestiti, Medrano, Mesonero, Rodriguez-Frias, Hanses, Muller, Hemmrich-Stanisak, Bellani, Grasselli, Pezzoli, Costantino, Albano, Cardamone, Bellelli, Citerio, Foti, Lamorte, Matullo, Baselli, Kurihara, Neb, My, Kurth, Hernandez, Pink, Rojas, Galvan-Femenia, Holter, Afset, Heyckendorf, Kassens, Damas, Rybniker, Altmuller, Ampuero, Martin, Erdmann, Banales, Badia, Dopazo, Schneider, Bergan, Barretina, Walter, Quero, Goikoetxea, Delgado, Guerrero, Fazaal, Kraft, Schroder, Risnes, Banasik, Muller, Gaede, Garcia-Etxebarria, Tonby, Heggelund, Izquierdo-Sanchez, Bettini, Sumoy, Sander, Lippert, Terranova, Nkambule, Knopp, Gustad, Garbarino, Santoro, Tellez, Roade, Ostadreza, Intxausti, Kogevinas, Riveiro-Barciela, Berger, Schaefer, Niemi, Gutierrez-Stampa, Carrabba, Figuera Basso, Valsecchi, Hernandez-Tejero, Vehreschild, Manunta, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Grimsrud, Cornberg, Nothen, Marquie, Castoldi, Cordioli, Cecconi, D’Amato, Augustin, Tomasi, Boada, Dreher, Seilmaier, Joannidis, Wittig, Mazzocco, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Ayo, Blay, Chueca, Montano, Braun, Ludwig, Marx, Martinez, Cornely, Witzke, Palmieri, Pa Study, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Espana, Hoffmann, Rosenstiel, Schommers, Suwalski, Pablo, Ferrer, Bals, Gualtierotti, Gallego-Duran, Nieto, Carpani, Morilla, Badalamenti, Haider, Ciesek, May, Bombace, Marsal, Pigazzini, Klein, Pelusi, Wilfling, Bosari, Volland, Brunak, Raychaudhuri, Schreiber, Heilmann-Heimbach, Aliberti, Ripke, Dudman, Wesse, Zheng, Bahmer, Eggermann, Illig, Brenner, Pumarola, Feldt, Folseraas, Cejudo, Landmesser, Protzer, Hehr, Rimoldi, Monzani, Skogen, Keitel, Kopfnagel, Friaza, Andrade, Moreno, Albrecht, Peter, Poller, Farre, Yi, Wang, Khodamoradi, Karadeniz, Latiano, Goerg, Bacher, Koehler, Tran, Zoller, Schulte, Heidecker, Ludwig, Fernandez, Romero-Gomez, Albillos, Invernizzi, Buti, Duga, Bujanda, Hov, Lenz, Asselta, Cid, Valenti, Karlsen, Caceres and Franke2022; Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022; Roberts et al., Reference Roberts, Partha, Rhead, Knight, Park, Coignet, Zhang, Berkowitz, Turrisini, Gaddis, McCurdy, Pavlovic, Ruiz, Sass, Ancestry, Baltzell, Guturu, Girshick, Ball, Hong and Rand2022; Table 2), including a frameshift insertion (rs8176719) in a recent trans-ethnic GWAS meta-analysis (Wu et al., Reference Wu, Ding, Li, Liu, Cheng, He, Xiao, Wu, Hou, Jiang, Long, Wang, Liu, Qu, Shi, Jiang, Mo, Ding, Fu, Han, Huo, Zeng, Zhou, Zhang, Ke, Xu, Ni, Shao, Wang, Liu, Li, Jin, Zheng, Wang, Liu, Li, Liu, Peng, Xu, Lin, Gao, Shi, Geng, Mu, Yan, Wang, Wu, Hao, Cheng, Qiu, Guo, Li, Chen, Sun, Lin, Jin, Wang, Sun and Wang2021), although in this genome-wide meta-analysis, the frameshift polymorphism was only identified in one GWAS study from China using sequencing data and further confirmation is needed. The same is true for the association of a genetic variant near the DOCK2 gene, which so far is significant only in one GWAS study from Japan and for the age group <65 years (Namkoong et al., Reference Namkoong, Edahiro, Takano, Nishihara, Shirai, Sonehara, Tanaka, Azekawa, Mikami, Lee, Hasegawa, Okudela, Okuzaki, Motooka, Kanai, Naito, Yamamoto, Wang, Saiki, Ishihara, Matsubara, Hamamoto, Hayashi, Yoshimura, Tachikawa, Yanagita, Hyugaji, Shimizu, Katayama, Kato, Morita, Takahashi, Harada, Naito, Hiki, Matsushita, Takagi, Aoki, Nakamura, Harada, Sasano, Kabata, Masaki, Kamata, Ikemura, Chubachi, Okamori, Terai, Morita, Asakura, Sasaki, Morisaki, Uwamino, Nanki, Uchida, Uno, Nishimura, Ishiguro, Isono, Shibata, Matsui, Hosoda, Takano, Nishida, Kobayashi, Takaku, Takayanagi, Ueda, Tada, Miyawaki, Yamamoto, Yoshida, Hayashi, Nagasaka, Arai, Kaneko, Sasaki, Tagaya, Kawana, Arimura, Takahashi, Anzai, Ito, Endo, Uchimura, Miyazaki, Honda, Tateishi, Tohda, Ichimura, Sonobe, Sassa, Nakajima, Nakano, Nakajima, Anan, Arai, Kurihara, Harada, Nishio, Ueda, Azuma, Saito, Sado, Miyazaki, Sato, Haruta, Nagasaki, Yasui, Hasegawa, Mutoh, Kimura, Sato, Takei, Hagimoto, Noguchi, Yamano, Sasano, Ota, Nakamori, Yoshiya, Saito, Yoshihara, Wada, Iwamura, Kanayama, Maruyama, Yoshiyama, Ohta, Kokuto, Ogata, Tanaka, Arakawa, Shimoda, Osawa, Tateno, Hase, Yoshida, Suzuki, Kawada, Horinouchi, Saito, Mitamura, Hagihara, Ochi, Uchida, Baba, Arai, Ogura, Takahashi, Hagiwara, Nagao, Konishi, Nakachi, Murakami, Yamada, Sugiura, Sano, Matsumoto, Kimura, Ono, Baba, Suzuki, Nakayama, Masuzawa, Namba, Suzuki, Naito, Liu, Takuwa, Sugihara, Wing, Sakakibara, Hizawa, Shiroyama, Miyawaki, Kawamura, Nakayama, Matsuo, Maeda, Nii, Noda, Niitsu, Adachi, Enomoto, Amiya, Hara, Yamaguchi, Murakami, Kuge, Matsumoto, Yamamoto, Yamamoto, Yoneda, Kishikawa, Yamada, Kawabata, Kijima, Takagaki, Sasa, Ueno, Suzuki, Takemoto, Eguchi, Fukusumi, Imai, Fukushima, Kishima, Inohara, Tomono, Kato, Takahashi, Matsuda, Hirata, Takeda, Koh, Manabe, Funatsu, Ito, Fukui, Shinozuka, Kohashi, Miyazaki, Shoko, Kojima, Adachi, Ishikawa, Takahashi, Inoue, Hirano, Kobayashi, Takaoka, Watanabe, Miyazawa, Kimura, Sado, Sugimoto, Kamiya, Kuwahara, Fujiwara, Matsunaga, Sato, Okada, Hirai, Kawashima, Narita, Niwa, Sekikawa, Nishi, Nishitsuji, Tani, Suzuki, Nakatsumi, Ogura, Kitamura, Hagiwara, Murohashi, Okabayashi, Mochimaru, Nukaga, Satomi, Oyamada, Mori, Baba, Fukui, Odate, Mashimo, Makino, Yagi, Hashiguchi, Kagyo, Shiomi, Fuke, Saito, Tsuchida, Fujitani, Takita, Morikawa, Yoshida, Izumo, Inomata, Kuse, Awano, Tone, Ito, Nakamura, Hoshino, Maruyama, Ishikura, Takata, Odani, Amishima, Hattori, Shichinohe, Kagaya, Kita, Ohta, Sakagami, Koshida, Hayashi, Shimizu, Kozu, Hiranuma, Gon, Izumi, Nagata, Ueda, Taki, Hanada, Kawamura, Ichikado, Nishiyama, Muranaka, Nakamura, Hashimoto, Wakahara, Koji, Omote, Ando, Kodama, Kaneyama, Maeda, Kuraki, Matsumoto, Yokote, Nakada, Abe, Oshima, Shimada, Harada, Takahashi, Ono, Sakurai, Shibusawa, Kimizuka, Kawana, Sano, Watanabe, Suematsu, Sageshima, Yoshifuji, Ito, Takahashi, Ishioka, Nakamura, Masuda, Wakabayashi, Watanabe, Ueda, Nishikawa, Chihara, Takeuchi, Onoi, Shinozuka, Sueyoshi, Nagasaki, Okamoto, Ishihara, Shimo, Tokunaga, Kusaka, Ohba, Isogai, Ogawa, Inoue, Fukuyama, Eriguchi, Yonekawa, Kan, Matsumoto, Kanaoka, Ihara, Komuta, Inoue, Chiba, Yamagata, Hiramatsu, Kai, Asano, Oguma, Ito, Hashimoto, Yamasaki, Kasamatsu, Komase, Hida, Tsuburai, Oyama, Takada, Kanda, Kitagawa, Fukuta, Miyake, Yoshida, Ogura, Abe, Kono, Togashi, Takoi, Kikuchi, Ogawa, Ogata, Ishihara, Kanehiro, Ozaki, Fuchimoto, Wada, Fujimoto, Nishiyama, Terashima, Beppu, Yoshida, Narumoto, Nagai, Ooshima, Motegi, Umeda, Miyagawa, Shimada, Endo, Ohira, Watanabe, Inoue, Igarashi, Sato, Sagara, Tanaka, Ohta, Kimura, Shibata, Tanino, Nikaido, Minemura, Sato, Yamada, Hashino, Shinoki, Iwagoe, Takahashi, Fujii, Kishi, Kanai, Imamura, Yamashita, Yatomi, Maeno, Hayashi, Takahashi, Kuramochi, Kamimaki, Tominaga, Ishii, Utsugi, Ono, Tanaka, Kashiwada, Fujita, Saito, Seike, Watanabe, Matsuse, Kodaka, Nakano, Oshio, Hirouchi, Makino, Egi, Omae, Nannya, Ueno, Katayama, Ai, Fukui, Kumanogoh, Sato, Hasegawa, Tokunaga, Ishii, Koike, Kitagawa, Kimura, Imoto, Miyano, Ogawa, Kanai, Fukunaga and Okada2022).

Table 1. Genome-wide significant (P < 5 × 10−8) susceptibility loci for SARS-CoV-2 infection and/or COVID-19 disease severity identified in large-scale (hypothesis-free) genome-wide analyses to date (as of August 2022) (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; COVID-19 Host Genetics Initiative, 2021; Pairo-Castineira et al., Reference Pairo-Castineira, Clohisey, Klaric, Bretherick, Rawlik, Pasko, Walker, Parkinson, Fourman, Russell, Furniss, Richmond, Gountouna, Wrobel, Harrison, Wang, Wu, Meynert, Griffiths, Oosthuyzen, Kousathanas, Moutsianas, Yang, Zhai, Zheng, Grimes, Beale, Millar, Shih, Keating, Zechner, Haley, Porteous, Hayward, Yang, Knight, Summers, Shankar-Hari, Klenerman, Turtle, Ho, Moore, Hinds, Horby, Nichol, Maslove, Ling, McAuley, Montgomery, Walsh, Pereira, Renieri, Gen, Investigators, Initiative, Me, Investigators, Gen, Shen, Ponting, Fawkes, Tenesa, Caulfield, Scott, Rowan, Murphy, PJM, Semple, Law, Vitart, Wilson and Baillie2021; Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021; Wu et al., Reference Wu, Ding, Li, Liu, Cheng, He, Xiao, Wu, Hou, Jiang, Long, Wang, Liu, Qu, Shi, Jiang, Mo, Ding, Fu, Han, Huo, Zeng, Zhou, Zhang, Ke, Xu, Ni, Shao, Wang, Liu, Li, Jin, Zheng, Wang, Liu, Li, Liu, Peng, Xu, Lin, Gao, Shi, Geng, Mu, Yan, Wang, Wu, Hao, Cheng, Qiu, Guo, Li, Chen, Sun, Lin, Jin, Wang, Sun and Wang2021; COVID-19 Host Genetics Initiative, 2022; Cruz et al., Reference Cruz, Almeida, Heredia, Quintela, Ceballos, Pita, Lorenzo-Salazar, Gonzalez-Montelongo, Gago-Dominguez, Porras, Castano, Nevado, Aguado, Aguilar, Aguilera-Albesa, Almadana, Almoguera, Alvarez, Andreu-Bernabeu, Arana-Arri, Arango, Arranz, Artiga, Baptista-Rosas, Barreda-Sanchez, Belhassen-Garcia, Bezerra, Bezerra, Boix-Palop, Brion, Brugada, Bustos, Calderon, Carbonell, Castano, Castelao, Conde-Vicente, Cordero-Lorenzana, Cortes-Sanchez, Corton, Darnaude, De Martino-Rodriguez, Campo-Perez, Bustamante, Dominguez-Garrido, Luchessi, Eiros, Sanabria, Farinas, Fernandez-Robelo, Fernandez-Rodriguez, Fernandez-Villa, Gil-Fournier, Gomez-Arrue, Alvarez, Quiros, Gonzalez-Penas, Gutierrez-Bautista, Herrero, Herrero-Gonzalez, Jimenez-Sousa, Lattig, Borja, Lopez-Rodriguez, Mancebo, Martin-Lopez, Martin, Martinez-Nieto, Martinez-Lopez, Martinez-Resendez, Martinez-Perez, Mazzeu, Macias, Minguez, Cuerda, Silbiger, Oliveira, Ortega-Paino, Parellada, Paz-Artal, Santos, Perez-Matute, Perez, Perez-Tomas, Perucho, Pinsach-Abuin, Pompa-Mera, Porras-Hurtado, Pujol, Leon, Resino, Fernandes, Rodriguez-Ruiz, Rodriguez-Artalejo, Rodriguez-Garcia, Ruiz-Cabello, Ruiz-Hornillos, Ryan, Soria, Souto, Tamayo, Tamayo-Velasco, Taracido-Fernandez, Teper, Torres-Tobar, Urioste, Valencia-Ramos, Yanez, Zarate, Nakanishi, Pigazzini, Degenhardt, Butler-Laporte, Maya-Miles, Bujanda, Bouysran, Palom, Ellinghaus, Martinez-Bueno, Rolker, Amitrano, Roade, Fava, Spinner, Prati, Bernardo, Garcia, Darcis, Fernandez-Cadenas, Holter, Banales, Frithiof, Duga, Asselta, Pereira, Romero-Gomez, Nafria-Jimenez, Hov, Migeotte, Renieri, Planas, Ludwig, Buti, Rahmouni, Alarcon-Riquelme, Schulte, Franke, Karlsen, Valenti, Zeberg, Richards, Ganna, Boada, Rojas, Ruiz, Sanchez, Real, Guillen-Navarro, Ayuso, Gonzalez-Neira, Riancho, Rojas-Martinez, Flores, Lapunzina and Carracedo2022; Degenhardt et al., Reference Degenhardt, Ellinghaus, Juzenas, Lerga-Jaso, Wendorff, Maya-Miles, Uellendahl-Werth, ElAbd, Ruhlemann, Arora, Ozer, Lenning, Myhre, Vadla, Wacker, Wienbrandt, Ortiz, Salazar, Chercoles, Palom, Ruiz, Garcia-Fernandez, Blanco-Grau, Mantovani, Zanella, Holten, Mayer, Bandera, Cherubini, Protti, Aghemo, Gerussi, Ramirez, Braun, Nebel, Barreira, Lleo, Teles, Kildal, Biondi, Caballero-Garralda, Ganna, Gori, Gluck, Lind, Tanck, Hinney, Nolla, Fracanzani, Peschuck, Cavallero, Dyrhol-Riise, Ruello, Julia, Muscatello, Pesenti, Voza, Rando-Segura, Solier, Schmidt, Cortes, Mateos, Nafria-Jimenez, Schaefer, Jensen, Bellinghausen, Maj, Ferrando, Horra, Quereda, Skurk, Thibeault, Scollo, Herr, Spinner, Gassner, Lange, Hu, Paccapelo, Lehmann, Angelini, Cappadona, Azuure, Bianco, Cea, Sancho, Hoff, Galimberti, Prati, Haschka, Jimenez, Pestana, Toapanta, Muniz-Diaz, Azzolini, Sandoval, Binatti, Scarpini, Helbig, Casalone, Urrechaga, Paraboschi, Pontali, Reverter, Calderon, Navas, Solligard, Contro, Arana-Arri, Aziz, Garcia, Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Kurth, Blasi, Malvestiti, Medrano, Mesonero, Rodriguez-Frias, Hanses, Muller, Hemmrich-Stanisak, Bellani, Grasselli, Pezzoli, Costantino, Albano, Cardamone, Bellelli, Citerio, Foti, Lamorte, Matullo, Baselli, Kurihara, Neb, My, Kurth, Hernandez, Pink, Rojas, Galvan-Femenia, Holter, Afset, Heyckendorf, Kassens, Damas, Rybniker, Altmuller, Ampuero, Martin, Erdmann, Banales, Badia, Dopazo, Schneider, Bergan, Barretina, Walter, Quero, Goikoetxea, Delgado, Guerrero, Fazaal, Kraft, Schroder, Risnes, Banasik, Muller, Gaede, Garcia-Etxebarria, Tonby, Heggelund, Izquierdo-Sanchez, Bettini, Sumoy, Sander, Lippert, Terranova, Nkambule, Knopp, Gustad, Garbarino, Santoro, Tellez, Roade, Ostadreza, Intxausti, Kogevinas, Riveiro-Barciela, Berger, Schaefer, Niemi, Gutierrez-Stampa, Carrabba, Figuera Basso, Valsecchi, Hernandez-Tejero, Vehreschild, Manunta, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Grimsrud, Cornberg, Nothen, Marquie, Castoldi, Cordioli, Cecconi, D’Amato, Augustin, Tomasi, Boada, Dreher, Seilmaier, Joannidis, Wittig, Mazzocco, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Ayo, Blay, Chueca, Montano, Braun, Ludwig, Marx, Martinez, Cornely, Witzke, Palmieri, Pa Study, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Espana, Hoffmann, Rosenstiel, Schommers, Suwalski, Pablo, Ferrer, Bals, Gualtierotti, Gallego-Duran, Nieto, Carpani, Morilla, Badalamenti, Haider, Ciesek, May, Bombace, Marsal, Pigazzini, Klein, Pelusi, Wilfling, Bosari, Volland, Brunak, Raychaudhuri, Schreiber, Heilmann-Heimbach, Aliberti, Ripke, Dudman, Wesse, Zheng, Bahmer, Eggermann, Illig, Brenner, Pumarola, Feldt, Folseraas, Cejudo, Landmesser, Protzer, Hehr, Rimoldi, Monzani, Skogen, Keitel, Kopfnagel, Friaza, Andrade, Moreno, Albrecht, Peter, Poller, Farre, Yi, Wang, Khodamoradi, Karadeniz, Latiano, Goerg, Bacher, Koehler, Tran, Zoller, Schulte, Heidecker, Ludwig, Fernandez, Romero-Gomez, Albillos, Invernizzi, Buti, Duga, Bujanda, Hov, Lenz, Asselta, Cid, Valenti, Karlsen, Caceres and Franke2022; Horowitz et al., Reference Horowitz, Kosmicki, Damask, Sharma, Roberts, Justice, Banerjee, Coignet, Yadav, Leader, Marcketta, Park, Lanche, Maxwell, Knight, Bai, Guturu, Sun, Baltzell, Kury, Backman, Girshick, O’Dushlaine, McCurdy, Partha, Mansfield, Turissini, Li, Zhang, Mbatchou, Watanabe, Gurski, McCarthy, Kang, Dobbyn, Stahl, Verma, Sirugo, Genetics, Ritchie, Jones, Balasubramanian, Siminovitch, Salerno, Shuldiner, Rader, Mirshahi, Locke, Marchini, Overton, Carey, Habegger, Cantor, Rand, Hong, Reid, Ball, Baras, Abecasis and Ferreira2022; Namkoong et al., Reference Namkoong, Edahiro, Takano, Nishihara, Shirai, Sonehara, Tanaka, Azekawa, Mikami, Lee, Hasegawa, Okudela, Okuzaki, Motooka, Kanai, Naito, Yamamoto, Wang, Saiki, Ishihara, Matsubara, Hamamoto, Hayashi, Yoshimura, Tachikawa, Yanagita, Hyugaji, Shimizu, Katayama, Kato, Morita, Takahashi, Harada, Naito, Hiki, Matsushita, Takagi, Aoki, Nakamura, Harada, Sasano, Kabata, Masaki, Kamata, Ikemura, Chubachi, Okamori, Terai, Morita, Asakura, Sasaki, Morisaki, Uwamino, Nanki, Uchida, Uno, Nishimura, Ishiguro, Isono, Shibata, Matsui, Hosoda, Takano, Nishida, Kobayashi, Takaku, Takayanagi, Ueda, Tada, Miyawaki, Yamamoto, Yoshida, Hayashi, Nagasaka, Arai, Kaneko, Sasaki, Tagaya, Kawana, Arimura, Takahashi, Anzai, Ito, Endo, Uchimura, Miyazaki, Honda, Tateishi, Tohda, Ichimura, Sonobe, Sassa, Nakajima, Nakano, Nakajima, Anan, Arai, Kurihara, Harada, Nishio, Ueda, Azuma, Saito, Sado, Miyazaki, Sato, Haruta, Nagasaki, Yasui, Hasegawa, Mutoh, Kimura, Sato, Takei, Hagimoto, Noguchi, Yamano, Sasano, Ota, Nakamori, Yoshiya, Saito, Yoshihara, Wada, Iwamura, Kanayama, Maruyama, Yoshiyama, Ohta, Kokuto, Ogata, Tanaka, Arakawa, Shimoda, Osawa, Tateno, Hase, Yoshida, Suzuki, Kawada, Horinouchi, Saito, Mitamura, Hagihara, Ochi, Uchida, Baba, Arai, Ogura, Takahashi, Hagiwara, Nagao, Konishi, Nakachi, Murakami, Yamada, Sugiura, Sano, Matsumoto, Kimura, Ono, Baba, Suzuki, Nakayama, Masuzawa, Namba, Suzuki, Naito, Liu, Takuwa, Sugihara, Wing, Sakakibara, Hizawa, Shiroyama, Miyawaki, Kawamura, Nakayama, Matsuo, Maeda, Nii, Noda, Niitsu, Adachi, Enomoto, Amiya, Hara, Yamaguchi, Murakami, Kuge, Matsumoto, Yamamoto, Yamamoto, Yoneda, Kishikawa, Yamada, Kawabata, Kijima, Takagaki, Sasa, Ueno, Suzuki, Takemoto, Eguchi, Fukusumi, Imai, Fukushima, Kishima, Inohara, Tomono, Kato, Takahashi, Matsuda, Hirata, Takeda, Koh, Manabe, Funatsu, Ito, Fukui, Shinozuka, Kohashi, Miyazaki, Shoko, Kojima, Adachi, Ishikawa, Takahashi, Inoue, Hirano, Kobayashi, Takaoka, Watanabe, Miyazawa, Kimura, Sado, Sugimoto, Kamiya, Kuwahara, Fujiwara, Matsunaga, Sato, Okada, Hirai, Kawashima, Narita, Niwa, Sekikawa, Nishi, Nishitsuji, Tani, Suzuki, Nakatsumi, Ogura, Kitamura, Hagiwara, Murohashi, Okabayashi, Mochimaru, Nukaga, Satomi, Oyamada, Mori, Baba, Fukui, Odate, Mashimo, Makino, Yagi, Hashiguchi, Kagyo, Shiomi, Fuke, Saito, Tsuchida, Fujitani, Takita, Morikawa, Yoshida, Izumo, Inomata, Kuse, Awano, Tone, Ito, Nakamura, Hoshino, Maruyama, Ishikura, Takata, Odani, Amishima, Hattori, Shichinohe, Kagaya, Kita, Ohta, Sakagami, Koshida, Hayashi, Shimizu, Kozu, Hiranuma, Gon, Izumi, Nagata, Ueda, Taki, Hanada, Kawamura, Ichikado, Nishiyama, Muranaka, Nakamura, Hashimoto, Wakahara, Koji, Omote, Ando, Kodama, Kaneyama, Maeda, Kuraki, Matsumoto, Yokote, Nakada, Abe, Oshima, Shimada, Harada, Takahashi, Ono, Sakurai, Shibusawa, Kimizuka, Kawana, Sano, Watanabe, Suematsu, Sageshima, Yoshifuji, Ito, Takahashi, Ishioka, Nakamura, Masuda, Wakabayashi, Watanabe, Ueda, Nishikawa, Chihara, Takeuchi, Onoi, Shinozuka, Sueyoshi, Nagasaki, Okamoto, Ishihara, Shimo, Tokunaga, Kusaka, Ohba, Isogai, Ogawa, Inoue, Fukuyama, Eriguchi, Yonekawa, Kan, Matsumoto, Kanaoka, Ihara, Komuta, Inoue, Chiba, Yamagata, Hiramatsu, Kai, Asano, Oguma, Ito, Hashimoto, Yamasaki, Kasamatsu, Komase, Hida, Tsuburai, Oyama, Takada, Kanda, Kitagawa, Fukuta, Miyake, Yoshida, Ogura, Abe, Kono, Togashi, Takoi, Kikuchi, Ogawa, Ogata, Ishihara, Kanehiro, Ozaki, Fuchimoto, Wada, Fujimoto, Nishiyama, Terashima, Beppu, Yoshida, Narumoto, Nagai, Ooshima, Motegi, Umeda, Miyagawa, Shimada, Endo, Ohira, Watanabe, Inoue, Igarashi, Sato, Sagara, Tanaka, Ohta, Kimura, Shibata, Tanino, Nikaido, Minemura, Sato, Yamada, Hashino, Shinoki, Iwagoe, Takahashi, Fujii, Kishi, Kanai, Imamura, Yamashita, Yatomi, Maeno, Hayashi, Takahashi, Kuramochi, Kamimaki, Tominaga, Ishii, Utsugi, Ono, Tanaka, Kashiwada, Fujita, Saito, Seike, Watanabe, Matsuse, Kodaka, Nakano, Oshio, Hirouchi, Makino, Egi, Omae, Nannya, Ueno, Katayama, Ai, Fukui, Kumanogoh, Sato, Hasegawa, Tokunaga, Ishii, Koike, Kitagawa, Kimura, Imoto, Miyano, Ogawa, Kanai, Fukunaga and Okada2022; Roberts et al., Reference Roberts, Partha, Rhead, Knight, Park, Coignet, Zhang, Berkowitz, Turrisini, Gaddis, McCurdy, Pavlovic, Ruiz, Sass, Ancestry, Baltzell, Guturu, Girshick, Ball, Hong and Rand2022)

Note: Susceptibility variants from GWAS and GWMA studies with fewer than 1,500 individuals and fewer than two study populations as well as candidate gene studies are not listed. Variant: dbSNP name of the lead variant (without mentioning nearby variant names from later studies). Locus: chromosomal region. Chromosome: position: position according to human genome build hg38. EA: effect allele. NEA: non-effect allele. OR: odds ratio (i.e., estimated effect size) with respect to EA from the respective publication. The effect direction refers to whether the EA increases (OR > 1) or decreases (OR < 1) the risk of infection and/or disease severity. Candidate gene: preferably selected candidate gene from the respective publication. Reference: publication in which the genome-wide significant association was first reported.

Table 2. Genome-wide significant associations between genetic variants at the ABO gene locus and SARS-CoV-2 infection and/or COVID-19 disease severity (including other important phenotypic associations for the variants)

The ABO blood group system in brief

The ABO histo-blood group system includes two antigens (A and B) and four blood groups (A, B, AB and O). The ABO blood group antigens, which are expressed predominantly on N-linked and O-linked glycoproteins as well as glycolipids, are expressed not only on erythrocytes but also on numerous other cell types. Their synthesis first requires synthesis of the histo-blood group H precursor antigen, which is catalyzed by the enzymes (fucosyltransferases) FUT1 (e.g., in erythroblasts, megakaryocytes and vascular endothelial cells) or FUT2 (in epithelial cells of, e.g., the upper respiratory tract and digestive tract), and then blood group A or B enzymes (glycosyltransferases) generate the A and B antigens (Cooling, Reference Cooling2015). In many epithelial tissues, ABO expression is highly dependent on the inheritance of the Secretor/FUT2 gene, and null alleles of FUT2 (the “nonsecretor” phenotype) are very common in the population (approximately 5–50% worldwide (Nordgren et al., Reference Nordgren, Sharma, Kambhampati, Lopman and Svensson2016)), resulting in a deficiency of precursor H antigen synthesis and thus also a deficiency of A and B antigens in the corresponding cell types. The ABO gene and the FUT2 gene are two of the few human genes that are clearly subject to frequency-dependent balanced selection (Pendu et al., Reference Pendu, Breiman, Rocher, Dion and Ruvoen-Clouet2021), which also suggests an important role in their interaction with environmental factors such as gut microbes (Ruhlemann et al., Reference Ruhlemann, Hermes, Bang, Doms, Moitinho-Silva, Thingholm, Frost, Degenhardt, Wittig, Kassens, Weiss, Peters, Neuhaus, Volker, Volzke, Homuth, Weiss, Grallert, Laudes, Lieb, Haller, Lerch, Baines and Franke2021). The glycosyltransferases of blood groups A and B are encoded by different alleles of the ABO gene: Type A antigen is synthesized by the glycosyltransferase encoded by A alleles of the ABO gene, while type B antigen is synthesized by the glycosyltransferase encoded by B alleles. The A and B antigens are autosomal codominant; this means that both A and B antigens are synthesized in A/B individuals. Blood group O is autosomal recessive, and the O alleles are unable to produce a functional enzyme; therefore, in O/O individuals, the H precursor antigen is left unchanged. For this reason, O blood group individuals have anti-A and anti-B antibodies, A blood group individuals have anti-B antibodies, B blood group individuals have anti-A antibodies and AB blood group individuals have neither anti-A nor anti-B antibodies.

Are the ABO locus and ABO blood groups related to infection risk, disease severity or both in COVID-19?

Although initial genome-wide and candidate studies have not yet provided a clear picture of this question, it is now apparent that genetic variants at the ABO locus confer risk (or protection) with SARS-CoV-2 infection and COVID-19 severity (Figure 1 and Table 2). Numerous hypothesis-driven (nongenome-wide) studies have also reported associations between ABO blood groups and risk for COVID-19 infection (Barnkob et al., Reference Barnkob, Pottegard, Stovring, Haunstrup, Homburg, Larsen, Hansen, Titlestad, Aagaard, Moller and Barington2020; Goker et al., Reference Goker, Karakulak, Demiroglu, Ceylan, Buyukasik, Inkaya, Aksu, Sayinalp, Haznedaroglu, Uzun, Akova, Ozcebe and Unal2020; Leaf et al., Reference Leaf, Al-Samkari, Brenner, Gupta and Leaf2020; Li et al., Reference Li, Wang, Chen, Cai, Deng and Yang2020; Zietz et al., Reference Zietz, Zucker and Tatonetti2020; Ahmed et al., Reference Ahmed, Quinn and Tan2021; Solmaz and Arac, Reference Solmaz and Arac2021; Zhao et al., Reference Zhao, Yang, Huang, Li, Gu, Lu, Zhang, Liu, Liu, Liu, He, Sun, Wei, Yang, Wang, Zhang, Zhou, Xing and Wang2021) and severity of COVID-19 (Hoiland et al., Reference Hoiland, Fergusson, Mitra, Griesdale, Devine, Stukas, Cooper, Thiara, Foster, Chen, Lee, Conway, Wellington and Sekhon2020; Sardu et al., Reference Sardu, Marfella, Maggi, Messina, Cirillo, Codella, Gambardella, Sardu, Gatta, Santulli and Paolisso2020; Muniz-Diaz et al., Reference Muniz-Diaz, Llopis, Parra, Roig, Ferrer, Grifols, Millan, Ene, Ramiro, Maglio, Garcia, Pinacho, Jaramillo, Pero, Artaza, Valles, Sauleda, Puig and Contreras2021; Ray et al., Reference Ray, Schull, Vermeulen and Park2021) with almost all studies reaching the same conclusion as the GWAS/GWMA studies: A lower risk of infection for people with blood type O than for people with non-O blood types, with blood type A (sometimes AB (Namkoong et al., Reference Namkoong, Edahiro, Takano, Nishihara, Shirai, Sonehara, Tanaka, Azekawa, Mikami, Lee, Hasegawa, Okudela, Okuzaki, Motooka, Kanai, Naito, Yamamoto, Wang, Saiki, Ishihara, Matsubara, Hamamoto, Hayashi, Yoshimura, Tachikawa, Yanagita, Hyugaji, Shimizu, Katayama, Kato, Morita, Takahashi, Harada, Naito, Hiki, Matsushita, Takagi, Aoki, Nakamura, Harada, Sasano, Kabata, Masaki, Kamata, Ikemura, Chubachi, Okamori, Terai, Morita, Asakura, Sasaki, Morisaki, Uwamino, Nanki, Uchida, Uno, Nishimura, Ishiguro, Isono, Shibata, Matsui, Hosoda, Takano, Nishida, Kobayashi, Takaku, Takayanagi, Ueda, Tada, Miyawaki, Yamamoto, Yoshida, Hayashi, Nagasaka, Arai, Kaneko, Sasaki, Tagaya, Kawana, Arimura, Takahashi, Anzai, Ito, Endo, Uchimura, Miyazaki, Honda, Tateishi, Tohda, Ichimura, Sonobe, Sassa, Nakajima, Nakano, Nakajima, Anan, Arai, Kurihara, Harada, Nishio, Ueda, Azuma, Saito, Sado, Miyazaki, Sato, Haruta, Nagasaki, Yasui, Hasegawa, Mutoh, Kimura, Sato, Takei, Hagimoto, Noguchi, Yamano, Sasano, Ota, Nakamori, Yoshiya, Saito, Yoshihara, Wada, Iwamura, Kanayama, Maruyama, Yoshiyama, Ohta, Kokuto, Ogata, Tanaka, Arakawa, Shimoda, Osawa, Tateno, Hase, Yoshida, Suzuki, Kawada, Horinouchi, Saito, Mitamura, Hagihara, Ochi, Uchida, Baba, Arai, Ogura, Takahashi, Hagiwara, Nagao, Konishi, Nakachi, Murakami, Yamada, Sugiura, Sano, Matsumoto, Kimura, Ono, Baba, Suzuki, Nakayama, Masuzawa, Namba, Suzuki, Naito, Liu, Takuwa, Sugihara, Wing, Sakakibara, Hizawa, Shiroyama, Miyawaki, Kawamura, Nakayama, Matsuo, Maeda, Nii, Noda, Niitsu, Adachi, Enomoto, Amiya, Hara, Yamaguchi, Murakami, Kuge, Matsumoto, Yamamoto, Yamamoto, Yoneda, Kishikawa, Yamada, Kawabata, Kijima, Takagaki, Sasa, Ueno, Suzuki, Takemoto, Eguchi, Fukusumi, Imai, Fukushima, Kishima, Inohara, Tomono, Kato, Takahashi, Matsuda, Hirata, Takeda, Koh, Manabe, Funatsu, Ito, Fukui, Shinozuka, Kohashi, Miyazaki, Shoko, Kojima, Adachi, Ishikawa, Takahashi, Inoue, Hirano, Kobayashi, Takaoka, Watanabe, Miyazawa, Kimura, Sado, Sugimoto, Kamiya, Kuwahara, Fujiwara, Matsunaga, Sato, Okada, Hirai, Kawashima, Narita, Niwa, Sekikawa, Nishi, Nishitsuji, Tani, Suzuki, Nakatsumi, Ogura, Kitamura, Hagiwara, Murohashi, Okabayashi, Mochimaru, Nukaga, Satomi, Oyamada, Mori, Baba, Fukui, Odate, Mashimo, Makino, Yagi, Hashiguchi, Kagyo, Shiomi, Fuke, Saito, Tsuchida, Fujitani, Takita, Morikawa, Yoshida, Izumo, Inomata, Kuse, Awano, Tone, Ito, Nakamura, Hoshino, Maruyama, Ishikura, Takata, Odani, Amishima, Hattori, Shichinohe, Kagaya, Kita, Ohta, Sakagami, Koshida, Hayashi, Shimizu, Kozu, Hiranuma, Gon, Izumi, Nagata, Ueda, Taki, Hanada, Kawamura, Ichikado, Nishiyama, Muranaka, Nakamura, Hashimoto, Wakahara, Koji, Omote, Ando, Kodama, Kaneyama, Maeda, Kuraki, Matsumoto, Yokote, Nakada, Abe, Oshima, Shimada, Harada, Takahashi, Ono, Sakurai, Shibusawa, Kimizuka, Kawana, Sano, Watanabe, Suematsu, Sageshima, Yoshifuji, Ito, Takahashi, Ishioka, Nakamura, Masuda, Wakabayashi, Watanabe, Ueda, Nishikawa, Chihara, Takeuchi, Onoi, Shinozuka, Sueyoshi, Nagasaki, Okamoto, Ishihara, Shimo, Tokunaga, Kusaka, Ohba, Isogai, Ogawa, Inoue, Fukuyama, Eriguchi, Yonekawa, Kan, Matsumoto, Kanaoka, Ihara, Komuta, Inoue, Chiba, Yamagata, Hiramatsu, Kai, Asano, Oguma, Ito, Hashimoto, Yamasaki, Kasamatsu, Komase, Hida, Tsuburai, Oyama, Takada, Kanda, Kitagawa, Fukuta, Miyake, Yoshida, Ogura, Abe, Kono, Togashi, Takoi, Kikuchi, Ogawa, Ogata, Ishihara, Kanehiro, Ozaki, Fuchimoto, Wada, Fujimoto, Nishiyama, Terashima, Beppu, Yoshida, Narumoto, Nagai, Ooshima, Motegi, Umeda, Miyagawa, Shimada, Endo, Ohira, Watanabe, Inoue, Igarashi, Sato, Sagara, Tanaka, Ohta, Kimura, Shibata, Tanino, Nikaido, Minemura, Sato, Yamada, Hashino, Shinoki, Iwagoe, Takahashi, Fujii, Kishi, Kanai, Imamura, Yamashita, Yatomi, Maeno, Hayashi, Takahashi, Kuramochi, Kamimaki, Tominaga, Ishii, Utsugi, Ono, Tanaka, Kashiwada, Fujita, Saito, Seike, Watanabe, Matsuse, Kodaka, Nakano, Oshio, Hirouchi, Makino, Egi, Omae, Nannya, Ueno, Katayama, Ai, Fukui, Kumanogoh, Sato, Hasegawa, Tokunaga, Ishii, Koike, Kitagawa, Kimura, Imoto, Miyano, Ogawa, Kanai, Fukunaga and Okada2022) because of higher number of patients examined in Asian countries where AB is more common) being associated with a higher risk. Although the significant estimated risk (odds ratio(OR) > 1) or protection (OR < 1) of the ABO blood groups is rather small (for SARS-CoV-2 infection: OR 0.81 and 95% confidence interval (95% CI) 0.75–0.86 for O vs. A/B/AB estimated across 20 cohort studies (Franchini et al., Reference Franchini, Cruciani, Mengoli, Marano, Candura, Lopez, Pati, Pupella and De Angelis2021); for COVID-19 disease severity with respiratory support: OR 0.65 for O vs. A/B/AB in Italian/Spanish study populations (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020); OR 0.81 for O vs. A/B/AB for Japanese study populations (Namkoong et al., Reference Namkoong, Edahiro, Takano, Nishihara, Shirai, Sonehara, Tanaka, Azekawa, Mikami, Lee, Hasegawa, Okudela, Okuzaki, Motooka, Kanai, Naito, Yamamoto, Wang, Saiki, Ishihara, Matsubara, Hamamoto, Hayashi, Yoshimura, Tachikawa, Yanagita, Hyugaji, Shimizu, Katayama, Kato, Morita, Takahashi, Harada, Naito, Hiki, Matsushita, Takagi, Aoki, Nakamura, Harada, Sasano, Kabata, Masaki, Kamata, Ikemura, Chubachi, Okamori, Terai, Morita, Asakura, Sasaki, Morisaki, Uwamino, Nanki, Uchida, Uno, Nishimura, Ishiguro, Isono, Shibata, Matsui, Hosoda, Takano, Nishida, Kobayashi, Takaku, Takayanagi, Ueda, Tada, Miyawaki, Yamamoto, Yoshida, Hayashi, Nagasaka, Arai, Kaneko, Sasaki, Tagaya, Kawana, Arimura, Takahashi, Anzai, Ito, Endo, Uchimura, Miyazaki, Honda, Tateishi, Tohda, Ichimura, Sonobe, Sassa, Nakajima, Nakano, Nakajima, Anan, Arai, Kurihara, Harada, Nishio, Ueda, Azuma, Saito, Sado, Miyazaki, Sato, Haruta, Nagasaki, Yasui, Hasegawa, Mutoh, Kimura, Sato, Takei, Hagimoto, Noguchi, Yamano, Sasano, Ota, Nakamori, Yoshiya, Saito, Yoshihara, Wada, Iwamura, Kanayama, Maruyama, Yoshiyama, Ohta, Kokuto, Ogata, Tanaka, Arakawa, Shimoda, Osawa, Tateno, Hase, Yoshida, Suzuki, Kawada, Horinouchi, Saito, Mitamura, Hagihara, Ochi, Uchida, Baba, Arai, Ogura, Takahashi, Hagiwara, Nagao, Konishi, Nakachi, Murakami, Yamada, Sugiura, Sano, Matsumoto, Kimura, Ono, Baba, Suzuki, Nakayama, Masuzawa, Namba, Suzuki, Naito, Liu, Takuwa, Sugihara, Wing, Sakakibara, Hizawa, Shiroyama, Miyawaki, Kawamura, Nakayama, Matsuo, Maeda, Nii, Noda, Niitsu, Adachi, Enomoto, Amiya, Hara, Yamaguchi, Murakami, Kuge, Matsumoto, Yamamoto, Yamamoto, Yoneda, Kishikawa, Yamada, Kawabata, Kijima, Takagaki, Sasa, Ueno, Suzuki, Takemoto, Eguchi, Fukusumi, Imai, Fukushima, Kishima, Inohara, Tomono, Kato, Takahashi, Matsuda, Hirata, Takeda, Koh, Manabe, Funatsu, Ito, Fukui, Shinozuka, Kohashi, Miyazaki, Shoko, Kojima, Adachi, Ishikawa, Takahashi, Inoue, Hirano, Kobayashi, Takaoka, Watanabe, Miyazawa, Kimura, Sado, Sugimoto, Kamiya, Kuwahara, Fujiwara, Matsunaga, Sato, Okada, Hirai, Kawashima, Narita, Niwa, Sekikawa, Nishi, Nishitsuji, Tani, Suzuki, Nakatsumi, Ogura, Kitamura, Hagiwara, Murohashi, Okabayashi, Mochimaru, Nukaga, Satomi, Oyamada, Mori, Baba, Fukui, Odate, Mashimo, Makino, Yagi, Hashiguchi, Kagyo, Shiomi, Fuke, Saito, Tsuchida, Fujitani, Takita, Morikawa, Yoshida, Izumo, Inomata, Kuse, Awano, Tone, Ito, Nakamura, Hoshino, Maruyama, Ishikura, Takata, Odani, Amishima, Hattori, Shichinohe, Kagaya, Kita, Ohta, Sakagami, Koshida, Hayashi, Shimizu, Kozu, Hiranuma, Gon, Izumi, Nagata, Ueda, Taki, Hanada, Kawamura, Ichikado, Nishiyama, Muranaka, Nakamura, Hashimoto, Wakahara, Koji, Omote, Ando, Kodama, Kaneyama, Maeda, Kuraki, Matsumoto, Yokote, Nakada, Abe, Oshima, Shimada, Harada, Takahashi, Ono, Sakurai, Shibusawa, Kimizuka, Kawana, Sano, Watanabe, Suematsu, Sageshima, Yoshifuji, Ito, Takahashi, Ishioka, Nakamura, Masuda, Wakabayashi, Watanabe, Ueda, Nishikawa, Chihara, Takeuchi, Onoi, Shinozuka, Sueyoshi, Nagasaki, Okamoto, Ishihara, Shimo, Tokunaga, Kusaka, Ohba, Isogai, Ogawa, Inoue, Fukuyama, Eriguchi, Yonekawa, Kan, Matsumoto, Kanaoka, Ihara, Komuta, Inoue, Chiba, Yamagata, Hiramatsu, Kai, Asano, Oguma, Ito, Hashimoto, Yamasaki, Kasamatsu, Komase, Hida, Tsuburai, Oyama, Takada, Kanda, Kitagawa, Fukuta, Miyake, Yoshida, Ogura, Abe, Kono, Togashi, Takoi, Kikuchi, Ogawa, Ogata, Ishihara, Kanehiro, Ozaki, Fuchimoto, Wada, Fujimoto, Nishiyama, Terashima, Beppu, Yoshida, Narumoto, Nagai, Ooshima, Motegi, Umeda, Miyagawa, Shimada, Endo, Ohira, Watanabe, Inoue, Igarashi, Sato, Sagara, Tanaka, Ohta, Kimura, Shibata, Tanino, Nikaido, Minemura, Sato, Yamada, Hashino, Shinoki, Iwagoe, Takahashi, Fujii, Kishi, Kanai, Imamura, Yamashita, Yatomi, Maeno, Hayashi, Takahashi, Kuramochi, Kamimaki, Tominaga, Ishii, Utsugi, Ono, Tanaka, Kashiwada, Fujita, Saito, Seike, Watanabe, Matsuse, Kodaka, Nakano, Oshio, Hirouchi, Makino, Egi, Omae, Nannya, Ueno, Katayama, Ai, Fukui, Kumanogoh, Sato, Hasegawa, Tokunaga, Ishii, Koike, Kitagawa, Kimura, Imoto, Miyano, Ogawa, Kanai, Fukunaga and Okada2022); OR 0.78 for O vs. A, OR 0.79 for O vs. B, OR 0.65 for O vs. AB for individuals of European ancestry from USA and United Kingdom (Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021); OR 0.64 for O vs. A, OR 0.51 for O vs. B for Latin Americans and OR 0.43 for O vs. B for African Americans (Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021), sometimes inconsistent results from other studies (Leaf et al., Reference Leaf, Al-Samkari, Brenner, Gupta and Leaf2020)), the actual effect or impact of these associations at the biological level and for the disease process in COVID-19 is difficult to assess. The impact on infection rate may depend strongly on the underlying pathophysiological mechanism, the ABO blood group distribution in the population of interest, socioeconomic interventions in different countries, and the proportion of the population already infected at a given time, among other factors. Interestingly, contrary to initial studies (Zietz et al., Reference Zietz, Zucker and Tatonetti2020), no association with the RHD locus was found (Shelton et al., Reference Shelton, Shastri, Ye, Weldon, Filshtein-Sonmez, Coker, Symons, Esparza-Gordillo, Aslibekyan and Auton2021), suggesting that the rhesus factor on its own (and independent of the ABO blood group) is not a genetic risk factor. No significant difference was also found between the rhesus-positive and rhesus-negative forms of each ABO blood group.

Figure 1. Summary of results from meta-analysis association studies at the 9q34.2 locus (ABO) conducted by the COVID-19 Host Genetics Initiative (HGI). Meta-analyses of association data show an association of the 9q34.2 locus (ABO) with (i) critical severity of illness, (ii) hospitalization and (iii) infection, as described in COVID-19 Host Genetics Initiative (2022). Upper Manhattan plot: association results for 8,779 critically ill COVID-19 patients versus 1,001,875 population controls. Middle Manhattan plot: association results for 24,274 hospitalized COVID-19 patients versus 2,061,529 population controls. Lower Manhattan plot: association results for 112,612 SARS-CoV-2 infected individuals versus 2,474,079 population controls. X-axis: chromosome positions and gene annotations on human genome build hg38. Y-axis: meta-analysis association p-values (−log10p) of genetic markers. Plots were generated with the COVID-19 Host Genetics Initiative Browser (https://app.covid19hg.org; release 6).

The inclusion of controls with unknown status in most GWAS on disease severity may have led to associations with disease severity also being related to infection, as hospitalized cases are susceptible to infection, but an untested control group may or may not be susceptible, so it would be helpful to test against asymptomatic cases as well. Investigation of possible associations with severity is also possible with a comparison of blood group frequencies between patient subgroups with different clinical characteristics; results of studies with patient subgroups (not exhaustive) are listed in Table 3. These studies have further shown that blood group O is associated with lower disease severity, which is consistent with previously reported (SARS-CoV-2 independent) effects of ABO blood groups on thrombosis and vascular function (Vasan et al., Reference Vasan, Rostgaard, Majeed, Ullum, Titlestad, Pedersen, Erikstrup, Nielsen, Melbye, Nyren, Hjalgrim and Edgren2016). Thus, numerous studies indicate that the ABO locus and ABO blood groups are susceptibility factors for SARS-CoV-2 infection and COVID-19 severity.

Table 3. Studies of mechanistic and pathophysiological hypotheses of ABO blood group effects as well as clinical findings from COVID-19 patient subgroup studies (not exhaustive) suggest an association between ABO blood groups and SARS-CoV-2 infection and COVID-19 disease severity

SARS-CoV-2 transmission models in the context of ABO blood group effects

Two potential pathophysiological mechanisms (Figure 2) have mainly been proposed to explain the reported association between ABO blood groups and the risk of SARS-CoV-2 infection: The ABO compatibility-dependence (or ABO-interference) hypothesis (neutralization by natural anti-ABO antibodies), as previously described for SARS-CoV-1 (Breiman et al., Reference Breiman, Ruven-Clouet and Le Pendu2020), and the ABO-dependent intrinsic hypothesis (direct attachment of the virus spike protein to blood group A glycans), as previously described for noroviruses and rotaviruses (Le Pendu and Ruvoen-Clouet, Reference Le Pendu and Ruvoen-Clouet2020).

Figure 2. Two predominant hypotheses of possible mechanisms involving ABO blood group-related antigens: (A) The ABO-compatibility-dependence model (or ABO-interference) and (B) the ABO-dependent intrinsic model. The ABO-compatibility dependence model was recently modeled by Ellis (Reference Ellis2021) under different assumptions and compared with observational healthcare data (Zietz et al., Reference Zietz, Zucker and Tatonetti2020; Zhao et al., Reference Zhao, Yang, Huang, Li, Gu, Lu, Zhang, Liu, Liu, Liu, He, Sun, Wei, Yang, Wang, Zhang, Zhou, Xing and Wang2021) and GWAS data from the Severe COVID-19 GWAS Group (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020). Both models have been further evaluated by Boukhari et al. (Reference Boukhari, Breiman, Jazat, Ruvoen-Clouet, Martinez, Damais-Cepitelli, Le Niger, Devie-Hubert, Penasse, Mauriere, Sebille, Durrbach and Le Pendu2021) in a French study population of 666 individuals (333 index persons and their spouses) of known ABO blood type with a high risk of SARS-CoV-2 transmission (hospital employees) as well as receptor-binding domain (RBD) protein binding experiments in cell lines and saliva samples from individuals of known ABO and secretor phenotypes. For the ABO-compatibility-dependence model, ρ represents the relative probability of virus transmission between an infected index person and an ABO-incompatible contact (impeded transmission; pairs denoted with “I”) and was estimated to be 40% on average (between 20 and 55% depending on ABO blood group frequencies and relative risk ratios in different countries) by Ellis (Reference Ellis2021). Boukhari et al. estimated a decrease of 41% in ABO-incompatible pairs. The ABO-dependent intrinsic hypothesis remains controversial because of conflicting study results (Boukhari et al., Reference Boukhari, Breiman, Jazat, Ruvoen-Clouet, Martinez, Damais-Cepitelli, Le Niger, Devie-Hubert, Penasse, Mauriere, Sebille, Durrbach and Le Pendu2021; Wu et al., Reference Wu, Arthur, Wang, Verkerke, Josephson, Kalman, Roback, Cummings and Stowell2021). n.a., not available. Figure based on Boukhari et al. (Reference Boukhari, Breiman, Jazat, Ruvoen-Clouet, Martinez, Damais-Cepitelli, Le Niger, Devie-Hubert, Penasse, Mauriere, Sebille, Durrbach and Le Pendu2021) and extended.

If SARS-CoV-2 viruses replicate in respiratory tract cells that express ABO antigens (depending on the host’s ABO blood group and secretor status) then the A, B or H epitopes may also be present on the viral envelope glycoproteins due to the host cell glycosyltransferases, as shown in in vitro studies (Deleers et al., Reference Deleers, Breiman, Daubie, Maggetto, Barreau, Besse, Clemenceau, Ruvoen-Clouet, Fils, Maillart, Doyen, Mahadeb, Jani, Van der Linden, Cannie, Hayef, Corazza, Le Pendu and El Kenz2021). Thus, analogous to the rules of blood transfusion, in ABO incompatible situations (denoted with “I” in Figure 2A) of an index person (the one who transmits the virus) and a contact person (the one who receives the virus), we can speculate that the transmitted SARS-CoV-2 virus particles are neutralized by anti-A and anti-B antibodies, in which case individuals of blood group 0 would be at an advantage because they have both anti-A and anti-B antibodies. This hypothesis was first supported by previous in vitro observations for SARS-CoV-1 that anti-A antibodies can specifically block the interaction between the SARS-CoV-1 spike (S)-glycoprotein and its target, the ACE2 receptor (Guillon et al., Reference Guillon, Clement, Sebille, Rivain, Chou, Ruvoen-Clouet and Le Pendu2008). Therefore, early after the outbreak of the COVID-19 pandemic, Breiman et al. hypothesized that in the presence of sufficient anti-A and/or anti-B antibody titers, individuals with blood groups O, A and B might also have some protection against transmission of SARS-CoV-2 by infected ABO-incompatible persons (Breiman et al., Reference Breiman, Ruven-Clouet and Le Pendu2020). This hypothesis has now been explored by Ellis (Reference Ellis2021) using more refined modeling techniques and COVID-19 GWAS (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020) and prevalence data (Zietz et al., Reference Zietz, Zucker and Tatonetti2020; Zhao et al., Reference Zhao, Yang, Huang, Li, Gu, Lu, Zhang, Liu, Liu, Liu, He, Sun, Wei, Yang, Wang, Zhang, Zhou, Xing and Wang2021) from regions in the early phase of the SARS-CoV-2 epidemic. If the model holds, ABO incompatibility reduces viral transmissibility by 60% (Ellis, Reference Ellis2021), but the relative risk for each blood group is nearly the same once the majority of a given population is infected (see French Navy aircraft study (Boudin et al., Reference Boudin, Janvier, Bylicki and Dutasta2020) below).

In contrast, according to the ABO-dependent intrinsic hypothesis (Figure 2B), individuals with blood groups A, B and AB are inherently more susceptible to SARS-CoV-2 infection than individuals with blood group O, regardless of the blood group of the transmitting index person. Only the blood group of the contact person plays a role here. The difference in susceptibility is attributed to the possibility of direct binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to blood group glycans (such as the A antigen) (Wu et al., Reference Wu, Arthur, Wang, Verkerke, Josephson, Kalman, Roback, Cummings and Stowell2021), which could facilitate the infection process and make individuals with non-O blood groups more vulnerable. Similar results were obtained from human noroviruses and rotaviruses studies, where the absence or low expression of the recognized glycan motifs due to combined ABO, FUT2 and FUT3 gene polymorphisms was associated with resistance to the diarrheal disease (Le Pendu and Ruvoen-Clouet, Reference Le Pendu and Ruvoen-Clouet2020).

In favor of the ABO-compatibility-dependence model

The effects of the two hypotheses could potentially overlap, but with different consequences for different constellations of ABO blood group frequencies in the population. In an attempt to test the two hypotheses based on further data, Boukhari et al. (Reference Boukhari, Breiman, Jazat, Ruvoen-Clouet, Martinez, Damais-Cepitelli, Le Niger, Devie-Hubert, Penasse, Mauriere, Sebille, Durrbach and Le Pendu2021) calculated symptomatic secondary attack rates (SAR) in 333 French couples (333 index persons (hospital employees) and their spouses who constantly slept in the same bedroom; only symptomatic infections within 7 days with PCR confirmation were counted) with known blood groups and assessed the effect of ABO compatibility/incompatibility. This study was convincing because of its very good study design; some previous ABO blood group studies on other infections may have lacked such a design, which could have led to inconclusive results. In addition, they experimentally reinvestigated the reported potential binding of the SARS-CoV-2 RBD to blood group A epitopes (Wu et al., Reference Wu, Arthur, Wang, Verkerke, Josephson, Kalman, Roback, Cummings and Stowell2021).

ABO incompatibility was significantly associated with a lower risk of symptomatic COVID-19 transmission (P = 0.0004; OR 0.43, 95% CI 0.27–0.69); the SAR was 47.2% in ABO-compatible couples, but only 27.9% in ABO-incompatible couples (decrease of 41%). After further classification of ABO-compatible and ABO-incompatible couples according to the ABO blood group of the contact partner (spouse), SAR were always higher in ABO-compatible couples than in ABO-incompatible couples, regardless of the blood group of the contact partner (with exception of blood group AB, which cannot be incompatible, see Figure 2A). This means that the risk of transmission to spouses of blood group A was not higher than that to spouses of other blood groups with ABO compatibility, suggesting that all ABO blood groups are intrinsically equally susceptible to COVID-19 (contradictory result to the hypothesis in Figure 2B and previous studies (Wu et al., Reference Wu, Arthur, Wang, Verkerke, Josephson, Kalman, Roback, Cummings and Stowell2021)). Interestingly, as in the GWAS studies, the COVID-19 negative subgroup had a much higher frequency of blood group O and a much lower frequency of blood group A compared to the COVID-19 positive subgroup. In their binding experiments, the authors were further unable to demonstrate, among other things, either binding of the recombinant chimeric RBD-Fc protein to the blood group A 1 type chain structures (expressed on epithelial cells) or binding above background level (in dependence of the ABO blood group of the donor) of the RBD to salivary mucins from saliva samples (salivary mucins contain histo-blood group antigens similar to those in epithelia; saliva samples with secretor phenotype were selected to ensure expression of A, B or H(O) histo-blood group antigens).

The impact of the ABO-compatibility-dependence model on the population and individual level

Different blood group antigens can generally increase or decrease host susceptibility to infections (Cooling, Reference Cooling2015). The two most common ABO blood groups in Western Europe are blood group A and blood group O. On the Eurasian continent, there is a gradient of blood group B, whose frequency increases from west to east (where a more balanced distribution between all ABO blood groups dominates and where also, interestingly, an ancient viral selection pressure on host coronavirus interacting genes began more than 20,000 years ago (Souilmi et al., Reference Souilmi, Lauterbur, Tobler, Huber, Johar, Moradi, Johnston, Krogan, Alexandrov and Enard2021)). In Africa, blood group O is the most common (Cooling, Reference Cooling2015), and the Americas show the high proportion of blood type O (see Cabezas-Cruz et al., Reference Cabezas-Cruz, Mateos-Hernandez, Alberdi, Villar, Riveau, Hermann, Schacht, Khalife, Correia-Neves, Gortazar and de la Fuente2017, Supplementary Table 1, for an excellent overview of published geographic ABO blood group distributions worldwide or https://biobankengine.shinyapps.io/hla-map/, tab “ABO Global Map”). On the population level, according to the ABO-compatibility-dependence hypothesis, transmission rates then would have to be higher in populations with a high frequency of blood group O than in populations in which this blood type is less common because the frequency of compatible encounters is then higher. Indeed, Pendu et al. (Reference Pendu, Breiman, Rocher, Dion and Ruvoen-Clouet2021) demonstrated (ruling out to a certain extent confounder effects due to socioeconomic and demographic inequalities and differences in protective measures among various countries) that the estimated protective effect of blood type O over A/B/AB was significantly higher in populations with blood group percentages below 40% than in populations with blood group percentages above 40%, and that countries where blood group O is most prevalent also had the highest SARS-CoV-2 infection rates. On an individual level, however, it is very likely that more or less no one can escape SARS-CoV-2 infection if a large part of the population is already infected. This can be illustrated by the isolated outbreak of SARS-CoV-2 in 2020, well-known from the media, when 75.8% of 1,769 crew members of the aircraft carrier Charles de Gaulle of the French Navy became infected, but no statistical association between ABO blood groups and SARS-CoV-2 incidence was found (Boudin et al., Reference Boudin, Janvier, Bylicki and Dutasta2020).

Conclusion and future perspectives

Twenty-five susceptibility loci for SARS-CoV-2 infection and/or COVID-19 have been identified through GWAS, and the most frequently replicated genetic finding is the ABO gene on chromosome 9q34.2, which encodes glycosyltransferases important for A and B antigens on epithelial cells, such as those of the upper respiratory tract and the digestive tract. The analysis of secondary attack rates (SAR) in ABO blood group incompatible pairs of individuals (denoted by pairs “I” in Figure 2A) as well as SARS-CoV-2 RBD experiments revealed no evidence for the ABO-dependent intrinsic susceptibility hypothesis (Figure 2B, i.e., higher susceptibility for blood group A due to potential binding of the SARS-CoV-2 RBD to the A antigen). Instead, the ABO-compatibility-dependence model is currently favored, where transmission in ABO incompatibility situations were associated with a much lower SAR than transmission in ABO compatibility situations (denoted by pairs “U” in Figure 2A). The results suggest that natural anti-AB antibodies can reduce the risk of SARS-CoV-2 transmission by up to 41% in blood group 0 individuals (Boukhari et al., Reference Boukhari, Breiman, Jazat, Ruvoen-Clouet, Martinez, Damais-Cepitelli, Le Niger, Devie-Hubert, Penasse, Mauriere, Sebille, Durrbach and Le Pendu2021), consistent with a value of 40% (Ellis, Reference Ellis2021) (20–55% depending on ABO blood group frequencies and relative risk ratios in different countries) estimated from COVID-19 GWAS and observational healthcare data (Ellinghaus et al., Reference Ellinghaus, Degenhardt, Bujanda, Buti, Albillos, Invernizzi, Fernandez, Prati, Baselli, Asselta, Grimsrud, Milani, Aziz, Kassens, May, Wendorff, Wienbrandt, Uellendahl-Werth, Zheng, Yi, de Pablo, Chercoles, Palom, Garcia-Fernandez, Rodriguez-Frias, Zanella, Bandera, Protti, Aghemo, Lleo, Biondi, Caballero-Garralda, Gori, Tanck, Carreras Nolla, Latiano, Fracanzani, Peschuck, Julia, Pesenti, Voza, Jimenez, Mateos, Jimenez, Quereda, Paccapelo, Gassner, Angelini, Cea, Solier, Pestana, Muniz-Diaz, Sandoval, Paraboschi, Navas, Garcia Sanchez, Ceriotti, Martinelli-Boneschi, Peyvandi, Blasi, Tellez, Blanco-Grau, Hemmrich-Stanisak, Grasselli, Costantino, Cardamone, Foti, Aneli, Kurihara, ElAbd, My, Galvan-Femenia, Martin, Erdmann, Ferrusquia-Acosta, Garcia-Etxebarria, Izquierdo-Sanchez, Bettini, Sumoy, Terranova, Moreira, Santoro, Scudeller, Mesonero, Roade, Ruhlemann, Schaefer, Carrabba, Riveiro-Barciela, Basso, Valsecchi, Hernandez-Tejero, Acosta-Herrera, D’Angio, Baldini, Cazzaniga, Schulzky, Cecconi, Wittig, Ciccarelli, Rodriguez-Gandia, Bocciolone, Miozzo, Montano, Braun, Sacchi, Martinez, Ozer, Palmieri, Faverio, Preatoni, Bonfanti, Omodei, Tentorio, Castro, Rodrigues, Ortiz, de Cid, Ferrer, Gualtierotti, Nieto, Goerg, Badalamenti, Marsal, Matullo, Pelusi, Juzenas, Aliberti, Monzani, Moreno, Wesse, Lenz, Pumarola, Rimoldi, Bosari, Albrecht, Peter, Romero-Gomez, D’Amato, Duga, Banales, Hov, Folseraas, Valenti, Franke and Karlsen2020; Zietz et al., Reference Zietz, Zucker and Tatonetti2020; Zhao et al., Reference Zhao, Yang, Huang, Li, Gu, Lu, Zhang, Liu, Liu, Liu, He, Sun, Wei, Yang, Wang, Zhang, Zhou, Xing and Wang2021). However, these estimates can only be valid if a large portion of the population is not yet infected with SARS-CoV-2. In previous studies, it has been reported that women with blood group O have higher natural anti-A antibody levels than men with blood type O and that antibody titers decrease with increasing age (de Franca et al., Reference de Franca, Poli, Ramos, Borsoi and Colella2011; McVey et al., Reference McVey, Baker, Parti, Berg, Gudino and Teschner2015). Therefore, future models could also account for possible sex- and age-related differences in SARS-CoV-2 transmission.

Major efforts by the worldwide GWAS community to unravel the genetic basis of COVID-19 have consistently identified genes with high biological plausibility, but no convincing polygenic risk score (PRS) for clinical testing for COVID-19 severity/SARS-CoV-2 infection has yet been published. This is a general problem with GWAS studies (Wald and Old, Reference Wald and Old2019), which is why PRS will be more useful for stratifying patients into subgroups. However, drug repurposing may offer a rapid approach to address the urgent need for therapeutics for COVID-19. Some of the genes identified in the COVID-19 GWAS studies, for example, IFNAR2 and ACE2, encode proteins against which drug candidates are currently being tested in clinical trials (Gaziano et al., Reference Gaziano, Giambartolomei, Pereira, Gaulton, Posner, Swanson, Ho, Iyengar, Kosik, Vujkovic, Gagnon, Bento, Barrio-Hernandez, Ronnblom, Hagberg, Lundtoft, Langenberg, Pietzner, Valentine, Gustincich, Tartaglia, Allara, Surendran, Burgess, Zhao, Peters, Prins, Angelantonio, Devineni, Shi, Lynch, DuVall, Garcon, Thomann, Zhou, Gorman, Huffman, O’Donnell, Tsao, Beckham, Pyarajan, Muralidhar, Huang, Ramoni, Beltrao, Danesh, Hung, Chang, Sun, Joseph, Leach, Edwards, Cho, Gaziano, Butterworth and Casas2021). In addition, GWAS studies of other COVID-19 symptoms such as loss of smell or taste (Shelton et al., Reference Shelton, Shastri, Fletez-Brant, Aslibekyan and Auton2022) could help elucidate the underlying biology, which could be further steps toward new precise treatments. It remains to be seen whether the genetic associations in COVID-19 can make a significant direct contribution to precision medicine. However, it should be remembered that genetic studies in patients are one of the best ways to explore new therapeutic targets for precision medicine: The overall added value is that GWAS conduct genetic research directly in humans, allowing us to study and uncover individual patient risk factors in a hypothesis-free manner. It has been estimated that selecting genetically based targets generally doubles the success rate in clinical development (Nelson et al., Reference Nelson, Tipney, Painter, Shen, Nicoletti, Shen, Floratos, Sham, Li, Wang, Cardon, Whittaker and Sanseau2015).

Not only various host factors such as sex, age, genetics and comorbidities, but also environmental factors such as the gut microbiome could have a major impact on SARS-CoV-2 infection and disease severity in COVID-19 (Chhibber-Goel et al., Reference Chhibber-Goel, Gopinathan and Sharma2021; Yeoh et al., Reference Yeoh, Zuo, Lui, Zhang, Liu, Li, Chung, Cheung, Tso, Fung, Chan, Ling, Joynt, Hui, Chow, Ng, Li, Ng, Yip, Wong, Chan, Wong, Chan and Ng2021; Wang et al., Reference Wang, Zhang, Wang, Dai, Qin, Zhou and Zhang2022). The composition of the microbiota varies between individuals and populations, and the composition of the gut microbiota is also genetically influenced (Kurilshikov et al., Reference Kurilshikov, Medina-Gomez, Bacigalupe, Radjabzadeh, Wang, Demirkan, Le Roy, Raygoza Garay, Finnicum, Liu, Zhernakova, Bonder, Hansen, Frost, Ruhlemann, Turpin, Moon, Kim, Lull, Barkan, Shah, Fornage, Szopinska-Tokov, Wallen, Borisevich, Agreus, Andreasson, Bang, Bedrani, Bell, Bisgaard, Boehnke, Boomsma, Burk, Claringbould, Croitoru, Davies, van Duijn, Duijts, Falony, Fu, van der Graaf, Hansen, Homuth, Hughes, Ijzerman, Jackson, Jaddoe, Joossens, Jorgensen, Keszthelyi, Knight, Laakso, Laudes, Launer, Lieb, Lusis, Masclee, Moll, Mujagic, Qibin, Rothschild, Shin, Sorensen, Steves, Thorsen, Timpson, Tito, Vieira-Silva, Volker, Volzke, Vosa, Wade, Walter, Watanabe, Weiss, Weiss, Weissbrod, Westra, Willemsen, Payami, Jonkers, Vasquez, de Geus, Meyer, Stokholm, Segal, Org, Wijmenga, Kim, Kaplan, Spector, Uitterlinden, Rivadeneira, Franke, Lerch, Franke, Sanna, D’Amato, Pedersen, Paterson, Kraaij, Raes and Zhernakova2021). ABO blood groups and Secretor/FUT2 status have already been associated with gut microbiome characteristics (Ruhlemann et al., Reference Ruhlemann, Hermes, Bang, Doms, Moitinho-Silva, Thingholm, Frost, Degenhardt, Wittig, Kassens, Weiss, Peters, Neuhaus, Volker, Volzke, Homuth, Weiss, Grallert, Laudes, Lieb, Haller, Lerch, Baines and Franke2021). Several studies have shown that SARS-CoV-2 infection has negative effects on the respiratory, intestinal and oral microbiota (Gang et al., Reference Gang, Wang, Xue and Zhang2022), manifested mainly in a decrease in microbial diversity and beneficial symbiotic bacteria and an increase in opportunistic pathogens (Zuo et al., Reference Zuo, Zhang, Lui, Yeoh, Li, Zhan, Wan, Chung, Cheung, Chen, Lai, Chen, Tso, Fung, Chan, Ling, Joynt, Hui, Chan, Chan and Ng2020; Gao et al., Reference Gao, Wang, Luo, Sun, Wang, Ding, Ren, Gang, Rao, Liu, Wang, Gao, Li, Zou, Liu, Yuan, Sun, Cui and Ren2021; Ren et al., Reference Ren, Wang, Cui, Lu, Wang, Luo, Chen, Ren, Sun, Liu, Liu, Liu, Li, Wang, Rao, Yuan, Zhang, Sun, Chen, Li, Hu, Wu, Yu, Kan and Li2021) or by priming of host inflammatory responses by the gut microbiome and regulation of endocrine signaling (Sarkar et al., Reference Sarkar, Harty, Moeller, Klein, Erdman, Friston and Carmody2021); however, studies on the effects of ABO blood groups on the human microbiome in COVID-19 patients are lacking. The extent to which the observed ABO blood group effects also apply to novel SARS-CoV-2 viral variants (as of 2022) is unknown. Whether the ABO-compatibility-dependence model also shows the same effects in people who have undergone reinfection with SARS-CoV-2 has not yet been investigated. According to the latest study results (infections until 2021; without Omicron variants), the risk for long-COVID is still present after previous vaccination (breakthrough SARS-CoV-2 infection) or could even increase after reinfections (Al-Aly et al., Reference Al-Aly, Bowe and Xie2022a). Whether the risk of COVID-19 increases with reinfections with SARS-CoV-2 is unclear, and recent study results sometimes contradict each other (Abu-Raddad et al., Reference Abu-Raddad, Chemaitelly and Bertollini2021; Chemaitelly et al., Reference Chemaitelly, Bertollini and Abu-Raddad2021; Al-Aly et al., Reference Al-Aly, Bowe and Xie2022b). Therefore, future efforts to study blood group effects in the context of the human microbiome and other demographic and genetic variables, and in the context of multiple infections and newer viral variants, may provide more detailed insights into susceptibility to SARS-CoV-2 infection and the severity of COVID-19 in the context of ABO blood group effects.

Open peer review

To view the open peer review materials for this article, please visit http://doi.org/10.1017/pcm.2022.12.

Acknowledgments

Figure 2 was created with BioRender.com.

Financial support

This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Cluster of Excellence 2167 “Precision Medicine in Chronic Inflammation (PMI)” (EXC 2167-390884018).

Competing interest

The author declares no competing interests.

References

1000 Genomes Project Consortium, Auton, A, Brooks, LD, Durbin, RM, Garrison, EP, Kang, HM, Korbel, JO, Marchini, JL, McCarthy, S, McVean, GA and Abecasis, GR (2015) A global reference for human genetic variation. Nature 526(7571), 6874.Google ScholarPubMed
Abu-Raddad, LJ, Chemaitelly, H, Bertollini, R and National Study Group for COVID-19 Epidemiology (2021) Severity of SARS-CoV-2 reinfections as compared with primary infections. The New England Journal of Medicine 385(26), 24872489.CrossRefGoogle ScholarPubMed
Ahmed, I, Quinn, L and Tan, BK (2021) COVID-19 and the ABO blood group in pregnancy: A tale of two multiethnic cities. International Journal of Laboratory Hematology 43(1), e45e47.CrossRefGoogle ScholarPubMed
Al-Aly, Z, Bowe, B and Xie, Y (2022a) Long COVID after breakthrough SARS-CoV-2 infection. Nature Medicine 28(7), 14611467.CrossRefGoogle ScholarPubMed
Al-Aly, Z, Bowe, B and Xie, Y (2022b) Outcomes of SARS-CoV-2 reinfection. Research Square, Pre-print.CrossRefGoogle Scholar
Barnkob, MB, Pottegard, A, Stovring, H, Haunstrup, TM, Homburg, K, Larsen, R, Hansen, MB, Titlestad, K, Aagaard, B, Moller, BK and Barington, T (2020) Reduced prevalence of SARS-CoV-2 infection in ABO blood group O. Blood Advances 4(20), 49904993.CrossRefGoogle ScholarPubMed
Berger, SA, Young, NA and Edberg, SC (1989) Relationship between infectious diseases and human blood type. European Journal of Clinical Microbiology & Infectious Diseases 8(8), 681689.CrossRefGoogle ScholarPubMed
Boudin, L, Janvier, F, Bylicki, O and Dutasta, F (2020) ABO blood groups are not associated with risk of acquiring the SARS-CoV-2 infection in young adults. Haematologica 105(12), 28412843.CrossRefGoogle Scholar
Boukhari, R, Breiman, A, Jazat, J, Ruvoen-Clouet, N, Martinez, S, Damais-Cepitelli, A, Le Niger, C, Devie-Hubert, I, Penasse, F, Mauriere, D, Sebille, V, Durrbach, A and Le Pendu, J (2021) ABO blood group incompatibility protects against SARS-CoV-2 transmission. Frontiers in Microbiology 12, 799519.CrossRefGoogle ScholarPubMed
Breiman, A, Ruven-Clouet, N and Le Pendu, J (2020) Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathogens 16(5), e1008556.CrossRefGoogle ScholarPubMed
Cabezas-Cruz, A, Mateos-Hernandez, L, Alberdi, P, Villar, M, Riveau, G, Hermann, E, Schacht, AM, Khalife, J, Correia-Neves, M, Gortazar, C and de la Fuente, J (2017) Effect of blood type on anti-alpha-gal immunity and the incidence of infectious diseases. Experimental & Molecular Medicine 49(3), e301.CrossRefGoogle ScholarPubMed
Chemaitelly, H, Bertollini, R, Abu-Raddad, LJ and National Study Group for COVID-19 Epidemiology (2021) Efficacy of natural immunity against SARS-CoV-2 reinfection with the Beta variant. The New England Journal of Medicine 385(27), 25852586.CrossRefGoogle ScholarPubMed
Chhibber-Goel, J, Gopinathan, S and Sharma, A (2021) Interplay between severities of COVID-19 and the gut microbiome: Implications of bacterial co-infections? Gut Pathogens 13(1), 14.CrossRefGoogle ScholarPubMed
Cooling, L (2015) Blood groups in infection and host susceptibility. Clinical Microbiology Reviews 28(3) 801870.CrossRefGoogle ScholarPubMed
COVID-19 Host Genetics Initiative (2021) Mapping the human genetic architecture of COVID-19. Nature 600(7889), 472477.CrossRefGoogle Scholar
COVID-19 Host Genetics Initiative (2022) A first update on mapping the human genetic architecture of COVID-19, Nature 608(7921), E1E10.CrossRefGoogle Scholar
Cruz, R, Almeida, SD, Heredia, ML, Quintela, I, Ceballos, FC, Pita, G, Lorenzo-Salazar, JM, Gonzalez-Montelongo, R, Gago-Dominguez, M, Porras, MS, Castano, JAT, Nevado, J, Aguado, JM, Aguilar, C, Aguilera-Albesa, S, Almadana, V, Almoguera, B, Alvarez, N, Andreu-Bernabeu, A, Arana-Arri, E, Arango, C, Arranz, MJ, Artiga, MJ, Baptista-Rosas, RC, Barreda-Sanchez, M, Belhassen-Garcia, M, Bezerra, JF, Bezerra, MAC, Boix-Palop, L, Brion, M, Brugada, R, Bustos, M, Calderon, EJ, Carbonell, C, Castano, L, Castelao, JE, Conde-Vicente, R, Cordero-Lorenzana, ML, Cortes-Sanchez, JL, Corton, M, Darnaude, MT, De Martino-Rodriguez, A, Campo-Perez, V, Bustamante, AD, Dominguez-Garrido, E, Luchessi, AD, Eiros, R, Sanabria, GME, Farinas, MC, Fernandez-Robelo, U, Fernandez-Rodriguez, A, Fernandez-Villa, T, Gil-Fournier, B, Gomez-Arrue, J, Alvarez, BG, Quiros, FGB, Gonzalez-Penas, J, Gutierrez-Bautista, JF, Herrero, MJ, Herrero-Gonzalez, A, Jimenez-Sousa, MA, Lattig, MC, Borja, AL, Lopez-Rodriguez, R, Mancebo, E, Martin-Lopez, C, Martin, V, Martinez-Nieto, O, Martinez-Lopez, I, Martinez-Resendez, MF, Martinez-Perez, A, Mazzeu, JA, Macias, EM, Minguez, P, Cuerda, VM, Silbiger, VN, Oliveira, SF, Ortega-Paino, E, Parellada, M, Paz-Artal, E, Santos, NPC, Perez-Matute, P, Perez, P, Perez-Tomas, ME, Perucho, T, Pinsach-Abuin, ML, Pompa-Mera, EN, Porras-Hurtado, GL, Pujol, A, Leon, SR, Resino, S, Fernandes, MR, Rodriguez-Ruiz, E, Rodriguez-Artalejo, F, Rodriguez-Garcia, JA, Ruiz-Cabello, F, Ruiz-Hornillos, J, Ryan, P, Soria, JM, Souto, JC, Tamayo, E, Tamayo-Velasco, A, Taracido-Fernandez, JC, Teper, A, Torres-Tobar, L, Urioste, M, Valencia-Ramos, J, Yanez, Z, Zarate, R, Nakanishi, T, Pigazzini, S, Degenhardt, F, Butler-Laporte, G, Maya-Miles, D, Bujanda, L, Bouysran, Y, Palom, A, Ellinghaus, D, Martinez-Bueno, M, Rolker, S, Amitrano, S, Roade, L, Fava, F, Spinner, CD, Prati, D, Bernardo, D, Garcia, F, Darcis, G, Fernandez-Cadenas, I, Holter, JC, Banales, JM, Frithiof, R, Duga, S, Asselta, R, Pereira, AC, Romero-Gomez, M, Nafria-Jimenez, B, Hov, JR, Migeotte, I, Renieri, A, Planas, AM, Ludwig, KU, Buti, M, Rahmouni, S, Alarcon-Riquelme, ME, Schulte, EC, Franke, A, Karlsen, TH, Valenti, L, Zeberg, H, Richards, B, Ganna, A, Boada, M, Rojas, I, Ruiz, A, Sanchez, P, Real, LM, SCOURGE Cohort Group, HOSTAGE Cohort Group, GRA@CE Cohort Group, Guillen-Navarro, E, Ayuso, C, Gonzalez-Neira, A, Riancho, JA, Rojas-Martinez, A, Flores, C, Lapunzina, P and Carracedo, A (2022) Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics 31, 37893806.CrossRefGoogle ScholarPubMed
de Franca, ND, Poli, MC, Ramos, PG, Borsoi, CS and Colella, R (2011) Titers of ABO antibodies in group O blood donors. Revista Brasileira de Hematologia e Hemoterapia 33(4), 259262.CrossRefGoogle ScholarPubMed
Degarege, A, Gebrezgi, MT, Ibanez, G, Wahlgren, M and Madhivanan, P (2019) Effect of the ABO blood group on susceptibility to severe malaria: A systematic review and meta-analysis. Blood Reviews 33, 5362.CrossRefGoogle ScholarPubMed
Degenhardt, F, Ellinghaus, D, Juzenas, S, Lerga-Jaso, J, Wendorff, M, Maya-Miles, D, Uellendahl-Werth, F, ElAbd, H, Ruhlemann, MC, Arora, J, Ozer, O, Lenning, OB, Myhre, R, Vadla, MS, Wacker, EM, Wienbrandt, L, Ortiz, AB, Salazar, A, Chercoles, AG, Palom, A, Ruiz, A, Garcia-Fernandez, AE, Blanco-Grau, A, Mantovani, A, Zanella, A, Holten, AR, Mayer, A, Bandera, A, Cherubini, A, Protti, A, Aghemo, A, Gerussi, A, Ramirez, A, Braun, A, Nebel, A, Barreira, A, Lleo, A, Teles, A, Kildal, AB, Biondi, A, Caballero-Garralda, A, Ganna, A, Gori, A, Gluck, A, Lind, A, Tanck, A, Hinney, A, Nolla, AC, Fracanzani, AL, Peschuck, A, Cavallero, A, Dyrhol-Riise, AM, Ruello, A, Julia, A, Muscatello, A, Pesenti, A, Voza, A, Rando-Segura, A, Solier, A, Schmidt, A, Cortes, B, Mateos, B, Nafria-Jimenez, B, Schaefer, B, Jensen, B, Bellinghausen, C, Maj, C, Ferrando, C, Horra, C, Quereda, C, Skurk, C, Thibeault, C, Scollo, C, Herr, C, Spinner, CD, Gassner, C, Lange, C, Hu, C, Paccapelo, C, Lehmann, C, Angelini, C, Cappadona, C, Azuure, C, COVICAT study group, Aachen Study (COVAS), Bianco, C, Cea, C, Sancho, C, Hoff, DAL, Galimberti, D, Prati, D, Haschka, D, Jimenez, D, Pestana, D, Toapanta, D, Muniz-Diaz, E, Azzolini, E, Sandoval, E, Binatti, E, Scarpini, E, Helbig, ET, Casalone, E, Urrechaga, E, Paraboschi, EM, Pontali, E, Reverter, E, Calderon, EJ, Navas, E, Solligard, E, Contro, E, Arana-Arri, E, Aziz, F, Garcia, F, Sanchez, FG, Ceriotti, F, Martinelli-Boneschi, F, Peyvandi, F, Kurth, F, Blasi, F, Malvestiti, F, Medrano, FJ, Mesonero, F, Rodriguez-Frias, F, Hanses, F, Muller, F, Hemmrich-Stanisak, G, Bellani, G, Grasselli, G, Pezzoli, G, Costantino, G, Albano, G, Cardamone, G, Bellelli, G, Citerio, G, Foti, G, Lamorte, G, Matullo, G, Baselli, G, Kurihara, H, Neb, H, My, I, Kurth, I, Hernandez, I, Pink, I, Rojas, I, Galvan-Femenia, I, Holter, JC, Afset, JE, Heyckendorf, J, Kassens, J, Damas, JK, Rybniker, J, Altmuller, J, Ampuero, J, Martin, J, Erdmann, J, Banales, JM, Badia, JR, Dopazo, J, Schneider, J, Bergan, J, Barretina, J, Walter, J, Quero, JH, Goikoetxea, J, Delgado, J, Guerrero, JM, Fazaal, J, Kraft, J, Schroder, J, Risnes, K, Banasik, K, Muller, KE, Gaede, KI, Garcia-Etxebarria, K, Tonby, K, Heggelund, L, Izquierdo-Sanchez, L, Bettini, LR, Sumoy, L, Sander, LE, Lippert, LJ, Terranova, L, Nkambule, L, Knopp, L, Gustad, LT, Garbarino, L, Santoro, L, Tellez, L, Roade, L, Ostadreza, M, Intxausti, M, Kogevinas, M, Riveiro-Barciela, M, Berger, MM, Schaefer, M, Niemi, MEK, Gutierrez-Stampa, MA, Carrabba, M, Figuera Basso, ME, Valsecchi, MG, Hernandez-Tejero, M, Vehreschild, M, Manunta, M, Acosta-Herrera, M, D’Angio, M, Baldini, M, Cazzaniga, M, Grimsrud, MM, Cornberg, M, Nothen, MM, Marquie, M, Castoldi, M, Cordioli, M, Cecconi, M, D’Amato, M, Augustin, M, Tomasi, M, Boada, M, Dreher, M, Seilmaier, MJ, Joannidis, M, Wittig, M, Mazzocco, M, Ciccarelli, M, Rodriguez-Gandia, M, Bocciolone, M, Miozzo, M, Ayo, NI, Blay, N, Chueca, N, Montano, N, Braun, N, Ludwig, N, Marx, N, Martinez, N, Norwegian SARS-CoV-2 Study Group, Cornely, OA, Witzke, O, Palmieri, O, Pa Study, G, Faverio, P, Preatoni, P, Bonfanti, P, Omodei, P, Tentorio, P, Castro, P, Rodrigues, PM, Espana, PP, Hoffmann, P, Rosenstiel, P, Schommers, P, Suwalski, P, Pablo, R, Ferrer, R, Bals, R, Gualtierotti, R, Gallego-Duran, R, Nieto, R, Carpani, R, Morilla, R, Badalamenti, S, Haider, S, Ciesek, S, May, S, Bombace, S, Marsal, S, Pigazzini, S, Klein, S, Pelusi, S, Wilfling, S, Bosari, S, Volland, S, Brunak, S, Raychaudhuri, S, Schreiber, S, Heilmann-Heimbach, S, Aliberti, S, Ripke, S, Dudman, S, Wesse, T, Zheng, T, STORM Study Group, The Humanitas Task Force, The Humanitas Gavazzeni Task Force, Bahmer, T, Eggermann, T, Illig, T, Brenner, T, Pumarola, T, Feldt, T, Folseraas, T, Cejudo, TG, Landmesser, U, Protzer, U, Hehr, U, Rimoldi, V, Monzani, V, Skogen, V, Keitel, V, Kopfnagel, V, Friaza, V, Andrade, V, Moreno, V, Albrecht, W, Peter, W, Poller, W, Farre, X, Yi, X, Wang, X, Khodamoradi, Y, Karadeniz, Z, Latiano, A, Goerg, S, Bacher, P, Koehler, P, Tran, F, Zoller, H, Schulte, EC, Heidecker, B, Ludwig, KU, Fernandez, J, Romero-Gomez, M, Albillos, A, Invernizzi, P, Buti, M, Duga, S, Bujanda, L, Hov, JR, Lenz, TL, Asselta, R, Cid, R, Valenti, L, Karlsen, TH, Caceres, M and Franke, A (2022) Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Human Molecular Genetics 31, 39453966.CrossRefGoogle ScholarPubMed
Deleers, M, Breiman, A, Daubie, V, Maggetto, C, Barreau, I, Besse, T, Clemenceau, B, Ruvoen-Clouet, N, Fils, JF, Maillart, E, Doyen, V, Mahadeb, B, Jani, JC, Van der Linden, P, Cannie, MM, Hayef, N, Corazza, F, Le Pendu, J and El Kenz, H (2021) Covid-19 and blood groups: ABO antibody levels may also matter. International Journal of Infectious Diseases 104, 242249.CrossRefGoogle ScholarPubMed
Desch, KC, Ozel, AB, Siemieniak, D, Kalish, Y, Shavit, JA, Thornburg, CD, Sharathkumar, AA, McHugh, CP, Laurie, CC, Crenshaw, A, Mirel, DB, Kim, Y, Cropp, CD, Molloy, AM, Kirke, PN, Bailey-Wilson, JE, Wilson, AF, Mills, JL, Scott, JM, Brody, LC, Li, JZ and Ginsburg, D (2013) Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association. Proceedings of the National Academy of Sciences of the United States of America 110(2), 588593.CrossRefGoogle ScholarPubMed
Ellinghaus, D, Degenhardt, F, Bujanda, L, Buti, M, Albillos, A, Invernizzi, P, Fernandez, J, Prati, D, Baselli, G, Asselta, R, Grimsrud, MM, Milani, C, Aziz, F, Kassens, J, May, S, Wendorff, M, Wienbrandt, L, Uellendahl-Werth, F, Zheng, T, Yi, X, de Pablo, R, Chercoles, AG, Palom, A, Garcia-Fernandez, AE, Rodriguez-Frias, F, Zanella, A, Bandera, A, Protti, A, Aghemo, A, Lleo, A, Biondi, A, Caballero-Garralda, A, Gori, A, Tanck, A, Carreras Nolla, A, Latiano, A, Fracanzani, AL, Peschuck, A, Julia, A, Pesenti, A, Voza, A, Jimenez, D, Mateos, B, Jimenez, BN, Quereda, C, Paccapelo, C, Gassner, C, Angelini, C, Cea, C, Solier, A, Pestana, D, Muniz-Diaz, E, Sandoval, E, Paraboschi, EM, Navas, E, Garcia Sanchez, F, Ceriotti, F, Martinelli-Boneschi, F, Peyvandi, F, Blasi, F, Tellez, L, Blanco-Grau, A, Hemmrich-Stanisak, G, Grasselli, G, Costantino, G, Cardamone, G, Foti, G, Aneli, S, Kurihara, H, ElAbd, H, My, I, Galvan-Femenia, I, Martin, J, Erdmann, J, Ferrusquia-Acosta, J, Garcia-Etxebarria, K, Izquierdo-Sanchez, L, Bettini, LR, Sumoy, L, Terranova, L, Moreira, L, Santoro, L, Scudeller, L, Mesonero, F, Roade, L, Ruhlemann, MC, Schaefer, M, Carrabba, M, Riveiro-Barciela, M, Basso, MEF, Valsecchi, MG, Hernandez-Tejero, M, Acosta-Herrera, M, D’Angio, M, Baldini, M, Cazzaniga, M, Schulzky, M, Cecconi, M, Wittig, M, Ciccarelli, M, Rodriguez-Gandia, M, Bocciolone, M, Miozzo, M, Montano, N, Braun, N, Sacchi, N, Martinez, N, Ozer, O, Palmieri, O, Faverio, P, Preatoni, P, Bonfanti, P, Omodei, P, Tentorio, P, Castro, P, Rodrigues, PM, Ortiz, AB, de Cid, R, Ferrer, R, Gualtierotti, R, Nieto, R, Goerg, S, Badalamenti, S, Marsal, S, Matullo, G, Pelusi, S, Juzenas, S, Aliberti, S, Monzani, V, Moreno, V, Wesse, T, Lenz, TL, Pumarola, T, Rimoldi, V, Bosari, S, Albrecht, W, Peter, W, Romero-Gomez, M, D’Amato, M, Duga, S, Banales, JM, Hov, JR, Folseraas, T, Valenti, L, Franke, A and Karlsen, TH (2020) Genomewide association study of severe Covid-19 with respiratory failure. The New England Journal of Medicine 383(16), 15221534.Google ScholarPubMed
Ellis, PJI (2021) Modelling suggests ABO histo-incompatibility may substantially reduce SARS-CoV-2 transmission. Epidemics 35, 100446.CrossRefGoogle ScholarPubMed
Folkersen, L, Gustafsson, S, Wang, Q, Hansen, DH, Hedman, AK, Schork, A, Page, K, Zhernakova, DV, Wu, Y, Peters, J, Eriksson, N, Bergen, SE, Boutin, TS, Bretherick, AD, Enroth, S, Kalnapenkis, A, Gadin, JR, Suur, BE, Chen, Y, Matic, L, Gale, JD, Lee, J, Zhang, W, Quazi, A, Ala-Korpela, M, Choi, SH, Claringbould, A, Danesh, J, Smith, GD, de Masi, F, Elmstahl, S, Engstrom, G, Fauman, E, Fernandez, C, Franke, L, Franks, PW, Giedraitis, V, Haley, C, Hamsten, A, Ingason, A, Johansson, A, Joshi, PK, Lind, L, Lindgren, CM, Lubitz, S, Palmer, T, Macdonald-Dunlop, E, Magnusson, M, Melander, O, Michaelsson, K, Morris, AP, Magi, R, Nagle, MW, Nilsson, PM, Nilsson, J, Orho-Melander, M, Polasek, O, Prins, B, Palsson, E, Qi, T, Sjogren, M, Sundstrom, J, Surendran, P, Vosa, U, Werge, T, Wernersson, R, Westra, HJ, Yang, J, Zhernakova, A, Arnlov, J, Fu, J, Smith, JG, Esko, T, Hayward, C, Gyllensten, U, Landen, M, Siegbahn, A, Wilson, JF, Wallentin, L, Butterworth, AS, Holmes, MV, Ingelsson, E and Malarstig, A (2020) Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nature Metabolism 2(10), 11351148.CrossRefGoogle ScholarPubMed
Franchini, M, Cruciani, M, Mengoli, C, Marano, G, Candura, F, Lopez, N, Pati, I, Pupella, S and De Angelis, V (2021) ABO blood group and COVID-19: An updated systematic literature review and meta-analysis. Blood Transfusion 19(4), 317326.Google ScholarPubMed
Gang, J, Wang, H, Xue, X and Zhang, S (2022) Microbiota and COVID-19: Long-term and complex influencing factors. Frontiers in Microbiology 13, 963488.CrossRefGoogle ScholarPubMed
Gao, M, Wang, H, Luo, H, Sun, Y, Wang, L, Ding, S, Ren, H, Gang, J, Rao, B, Liu, S, Wang, X, Gao, X, Li, M, Zou, Y, Liu, C, Yuan, C, Sun, J, Cui, G and Ren, Z (2021) Characterization of the human oropharyngeal microbiomes in SARS-CoV-2 infection and recovery patients. Advanced Science (Weinheim) 8(20), e2102785.CrossRefGoogle ScholarPubMed
Gaziano, L, Giambartolomei, C, Pereira, AC, Gaulton, A, Posner, DC, Swanson, SA, Ho, YL, Iyengar, SK, Kosik, NM, Vujkovic, M, Gagnon, DR, Bento, AP, Barrio-Hernandez, I, Ronnblom, L, Hagberg, N, Lundtoft, C, Langenberg, C, Pietzner, M, Valentine, D, Gustincich, S, Tartaglia, GG, Allara, E, Surendran, P, Burgess, S, Zhao, JH, Peters, JE, Prins, BP, Angelantonio, ED, Devineni, P, Shi, Y, Lynch, KE, DuVall, SL, Garcon, H, Thomann, LO, Zhou, JJ, Gorman, BR, Huffman, JE, O’Donnell, CJ, Tsao, PS, Beckham, JC, Pyarajan, S, Muralidhar, S, Huang, GD, Ramoni, R, Beltrao, P, Danesh, J, Hung, AM, Chang, KM, Sun, YV, Joseph, J, Leach, AR, Edwards, TL, Cho, K, Gaziano, JM, Butterworth, AS, Casas, JP and VA Million Veteran Program COVID-19 Science Initiative (2021) Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine 27(4), 668676.CrossRefGoogle ScholarPubMed
Goker, H, Karakulak, EA, Demiroglu, H, Ceylan, CMA, Buyukasik, Y, Inkaya, AC, Aksu, S, Sayinalp, N, Haznedaroglu, IC, Uzun, O, Akova, M, Ozcebe, OI and Unal, S (2020) The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turkish Journal of Medical Sciences 50(4), 679683.CrossRefGoogle ScholarPubMed
Guillon, P, Clement, M, Sebille, V, Rivain, JG, Chou, CF, Ruvoen-Clouet, N and Le Pendu, J (2008) Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 18(12), 10851093.CrossRefGoogle ScholarPubMed
Herrera-Rivero, M, Stoll, M, Hegenbarth, JC, Ruhle, F, Limperger, V, Junker, R, Franke, A, Hoffmann, P, Shneyder, M, Stach, M and Nowak-Gottl, U (2021) Single- and multimarker genome-wide scans evidence novel genetic risk modifiers for venous thromboembolism. Thrombosis and Haemostasis 121(9), 11691180.CrossRefGoogle ScholarPubMed
Hoiland, RL, Fergusson, NA, Mitra, AR, Griesdale, DEG, Devine, DV, Stukas, S, Cooper, J, Thiara, S, Foster, D, Chen, LYC, Lee, AYY, Conway, EM, Wellington, CL and Sekhon, MS (2020) The association of ABO blood group with indices of disease severity and multiorgan dysfunction in COVID-19. Blood Advances 4(20), 49814989.CrossRefGoogle ScholarPubMed
Horowitz, JE, Kosmicki, JA, Damask, A, Sharma, D, Roberts, GHL, Justice, AE, Banerjee, N, Coignet, MV, Yadav, A, Leader, JB, Marcketta, A, Park, DS, Lanche, R, Maxwell, E, Knight, SC, Bai, X, Guturu, H, Sun, D, Baltzell, A, Kury, FSP, Backman, JD, Girshick, AR, O’Dushlaine, C, McCurdy, SR, Partha, R, Mansfield, AJ, Turissini, DA, Li, AH, Zhang, M, Mbatchou, J, Watanabe, K, Gurski, L, McCarthy, SE, Kang, HM, Dobbyn, L, Stahl, E, Verma, A, Sirugo, G, Genetics, CR, Ritchie, MD, Jones, M, Balasubramanian, S, Siminovitch, K, Salerno, WJ, Shuldiner, AR, Rader, DJ, Mirshahi, T, Locke, AE, Marchini, J, Overton, JD, Carey, DJ, Habegger, L, Cantor, MN, Rand, KA, Hong, EL, Reid, JG, Ball, CA, Baras, A, Abecasis, GR and Ferreira, MAR (2022) Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genetics 54(4), 382392.CrossRefGoogle ScholarPubMed
Kachuri, L, Jeon, S, DeWan, AT, Metayer, C, Ma, X, Witte, JS, Chiang, CWK, Wiemels, JL and de Smith, AJ (2021) Genetic determinants of blood-cell traits influence susceptibility to childhood acute lymphoblastic leukemia. American Journal of Human Genetics 108(10), 18231835.CrossRefGoogle ScholarPubMed
Kurilshikov, A, Medina-Gomez, C, Bacigalupe, R, Radjabzadeh, D, Wang, J, Demirkan, A, Le Roy, CI, Raygoza Garay, JA, Finnicum, CT, Liu, X, Zhernakova, DV, Bonder, MJ, Hansen, TH, Frost, F, Ruhlemann, MC, Turpin, W, Moon, JY, Kim, HN, Lull, K, Barkan, E, Shah, SA, Fornage, M, Szopinska-Tokov, J, Wallen, ZD, Borisevich, D, Agreus, L, Andreasson, A, Bang, C, Bedrani, L, Bell, JT, Bisgaard, H, Boehnke, M, Boomsma, DI, Burk, RD, Claringbould, A, Croitoru, K, Davies, GE, van Duijn, CM, Duijts, L, Falony, G, Fu, J, van der Graaf, A, Hansen, T, Homuth, G, Hughes, DA, Ijzerman, RG, Jackson, MA, Jaddoe, VWV, Joossens, M, Jorgensen, T, Keszthelyi, D, Knight, R, Laakso, M, Laudes, M, Launer, LJ, Lieb, W, Lusis, AJ, Masclee, AAM, Moll, HA, Mujagic, Z, Qibin, Q, Rothschild, D, Shin, H, Sorensen, SJ, Steves, CJ, Thorsen, J, Timpson, NJ, Tito, RY, Vieira-Silva, S, Volker, U, Volzke, H, Vosa, U, Wade, KH, Walter, S, Watanabe, K, Weiss, S, Weiss, FU, Weissbrod, O, Westra, HJ, Willemsen, G, Payami, H, Jonkers, D, Vasquez, AA, de Geus, EJC, Meyer, KA, Stokholm, J, Segal, E, Org, E, Wijmenga, C, Kim, HL, Kaplan, RC, Spector, TD, Uitterlinden, AG, Rivadeneira, F, Franke, A, Lerch, MM, Franke, L, Sanna, S, D’Amato, M, Pedersen, O, Paterson, AD, Kraaij, R, Raes, J and Zhernakova, A (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics 53(2), 156165.CrossRefGoogle ScholarPubMed
Le Pendu, J and Ruvoen-Clouet, N (2020) Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Human Genetics 139(6–7), 903910.CrossRefGoogle ScholarPubMed
Leaf, RK, Al-Samkari, H, Brenner, SK, Gupta, S and Leaf, DE (2020) ABO phenotype and death in critically ill patients with COVID-19. British Journal of Haematology 190(4), e204e208.CrossRefGoogle ScholarPubMed
Li, J, Wang, X, Chen, J, Cai, Y, Deng, A and Yang, M (2020) Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. British Journal of Haematology 190(1), 2427.CrossRefGoogle ScholarPubMed
Ligthart, S, Vaez, A, Vosa, U, Stathopoulou, MG, de Vries, PS, Prins, BP, Van der Most, PJ, Tanaka, T, Naderi, E, Rose, LM, Wu, Y, Karlsson, R, Barbalic, M, Lin, H, Pool, R, Zhu, G, Mace, A, Sidore, C, Trompet, S, Mangino, M, Sabater-Lleal, M, Kemp, JP, Abbasi, A, Kacprowski, T, Verweij, N, Smith, AV, Huang, T, Marzi, C, Feitosa, MF, Lohman, KK, Kleber, ME, Milaneschi, Y, Mueller, C, Huq, M, Vlachopoulou, E, Lyytikainen, LP, Oldmeadow, C, Deelen, J, Perola, M, Zhao, JH, Feenstra, B, Cohort, SLL, Amini, M, Group CIW, Lahti, J, Schraut, KE, Fornage, M, Suktitipat, B, Chen, WM, Li, X, Nutile, T, Malerba, G, Luan, J, Bak, T, Schork, N, Del Greco, MF, Thiering, E, Mahajan, A, Marioni, RE, Mihailov, E, Eriksson, J, Ozel, AB, Zhang, W, Nethander, M, Cheng, YC, Aslibekyan, S, Ang, W, Gandin, I, Yengo, L, Portas, L, Kooperberg, C, Hofer, E, Rajan, KB, Schurmann, C, den Hollander, W, Ahluwalia, TS, Zhao, J, Draisma, HHM, Ford, I, Timpson, N, Teumer, A, Huang, H, Wahl, S, Liu, Y, Huang, J, Uh, HW, Geller, F, Joshi, PK, Yanek, LR, Trabetti, E, Lehne, B, Vozzi, D, Verbanck, M, Biino, G, Saba, Y, Meulenbelt, I, O’Connell, JR, Laakso, M, Giulianini, F, Magnusson, PKE, Ballantyne, CM, Hottenga, JJ, Montgomery, GW, Rivadineira, F, Rueedi, R, Steri, M, Herzig, KH, Stott, DJ, Menni, C, Franberg, M, Pourcain, BS, Felix, SB, Pers, TH, SJL, Bakker, Kraft, P, Peters, A, Vaidya, D, Delgado, G, Smit, JH, Grossmann, V, Sinisalo, J, Seppala, I, Williams, SR, Holliday, EG, Moed, M, Langenberg, C, Raikkonen, K, Ding, J, Campbell, H, Sale, MM, Chen, YI, James, AL, Ruggiero, D, Soranzo, N, Hartman, CA, Smith, EN, Berenson, GS, Fuchsberger, C, Hernandez, D, Tiesler, CMT, Giedraitis, V, Liewald, D, Fischer, K, Mellstrom, D, Larsson, A, Wang, Y, Scott, WR, Lorentzon, M, Beilby, J, Ryan, KA, Pennell, CE, Vuckovic, D, Balkau, B, Concas, MP, Schmidt, R, de Leon, CFM, Bottinger, EP, Kloppenburg, M, Paternoster, L, Boehnke, M, Musk, AW, Willemsen, G, Evans, DM, PAF, Madden, Kahonen, M, Kutalik, Z, Zoledziewska, M, Karhunen, V, Kritchevsky, SB, Sattar, N, Lachance, G, Clarke, R, Harris, TB, Raitakari, OT, Attia, JR, van Heemst, D, Kajantie, E, Sorice, R, Gambaro, G, Scott, RA, Hicks, AA, Ferrucci, L, Standl, M, Lindgren, CM, Starr, JM, Karlsson, M, Lind, L, Li, JZ, Chambers, JC, Mori, TA, de Geus, E, Heath, AC, Martin, NG, Auvinen, J, Buckley, BM, de Craen, AJM, Waldenberger, M, Strauch, K, Meitinger, T, Scott, RJ, McEvoy, M, Beekman, M, Bombieri, C, Ridker, PM, Mohlke, KL, Pedersen, NL, Morrison, AC, Boomsma, DI, Whitfield, JB, Strachan, DP, Hofman, A, Vollenweider, P, Cucca, F, Jarvelin, MR, Jukema, JW, Spector, TD, Hamsten, A, Zeller, T, Uitterlinden, AG, Nauck, M, Gudnason, V, Qi, L, Grallert, H, Borecki, IB, Rotter, JI, Marz, W, Wild, PS, Lokki, ML, Boyle, M, Salomaa, V, Melbye, M, Eriksson, JG, Wilson, JF, Penninx, B, Becker, DM, Worrall, BB, Gibson, G, Krauss, RM, Ciullo, M, Zaza, G, Wareham, NJ, Oldehinkel, AJ, Palmer, LJ, Murray, SS, Pramstaller, PP, Bandinelli, S, Heinrich, J, Ingelsson, E, Deary, IJ, Magi, R, Vandenput, L, van der Harst, P, Desch, KC, Kooner, JS, Ohlsson, C, Hayward, C, Lehtimaki, T, Shuldiner, AR, Arnett, DK, Beilin, LJ, Robino, A, Froguel, P, Pirastu, M, Jess, T, Koenig, W, Loos, RJF, Evans, DA, Schmidt, H, Smith, GD, Slagboom, PE, Eiriksdottir, G, Morris, AP, Psaty, BM, Tracy, RP, Nolte, IM, Boerwinkle, E, Visvikis-Siest, S, Reiner, AP, Gross, M, Bis, JC, Franke, L, Franco, OH, Benjamin, EJ, Chasman, DI, Dupuis, J, Snieder, H, Dehghan, A and Alizadeh, BZ (2018) Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. American Journal of Human Genetics 103(5), 691706.CrossRefGoogle ScholarPubMed
Lindstrom, S, Wang, L, Smith, EN, Gordon, W, van Hylckama Vlieg, A, de Andrade, M, Brody, JA, Pattee, JW, Haessler, J, Brumpton, BM, Chasman, DI, Suchon, P, Chen, MH, Turman, C, Germain, M, Wiggins, KL, MacDonald, J, Braekkan, SK, Armasu, SM, Pankratz, N, Jackson, RD, Nielsen, JB, Giulianini, F, Puurunen, MK, Ibrahim, M, Heckbert, SR, Damrauer, SM, Natarajan, P, Klarin, D, Veteran, PM, de Vries, PS, Sabater-Lleal, M, Huffman, JE, Group CHW, Bammler, TK, Frazer, KA, McCauley, BM, Taylor, K, Pankow, JS, Reiner, AP, Gabrielsen, ME, Deleuze, JF, O’Donnell, CJ, Kim, J, McKnight, B, Kraft, P, Hansen, JB, Rosendaal, FR, Heit, JA, Psaty, BM, Tang, W, Kooperberg, C, Hveem, K, Ridker, PM, Morange, PE, Johnson, AD, Kabrhel, C, Tregouet, DA and Smith, NL (2019) Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 134(19), 16451657.CrossRefGoogle ScholarPubMed
Mackinnon, MJ, Mwangi, TW, Snow, RW, Marsh, K and Williams, TN (2005) Heritability of malaria in Africa. PLoS Medicine 2(12), e340.CrossRefGoogle ScholarPubMed
McVey, J, Baker, D, Parti, R, Berg, R, Gudino, M and Teschner, W (2015) Anti-a and anti-B titers in donor plasma, plasma pools, and immunoglobulin final products. Transfusion 55(Suppl 2), S98S104.CrossRefGoogle ScholarPubMed
Muniz-Diaz, E, Llopis, J, Parra, R, Roig, I, Ferrer, G, Grifols, J, Millan, A, Ene, G, Ramiro, L, Maglio, L, Garcia, N, Pinacho, A, Jaramillo, A, Pero, A, Artaza, G, Valles, R, Sauleda, S, Puig, L and Contreras, E (2021) Relationship between the ABO blood group and COVID-19 susceptibility, severity and mortality in two cohorts of patients. Blood Transfusion 19(1), 5463.Google ScholarPubMed
Naitza, S, Porcu, E, Steri, M, Taub, DD, Mulas, A, Xiao, X, Strait, J, Dei, M, Lai, S, Busonero, F, Maschio, A, Usala, G, Zoledziewska, M, Sidore, C, Zara, I, Pitzalis, M, Loi, A, Virdis, F, Piras, R, Deidda, F, Whalen, MB, Crisponi, L, Concas, A, Podda, C, Uzzau, S, Scheet, P, Longo, DL, Lakatta, E, Abecasis, GR, Cao, A, Schlessinger, D, Uda, M, Sanna, S and Cucca, F (2012) A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genetics 8(1), e1002480.CrossRefGoogle Scholar
Namkoong, H, Edahiro, R, Takano, T, Nishihara, H, Shirai, Y, Sonehara, K, Tanaka, H, Azekawa, S, Mikami, Y, Lee, H, Hasegawa, T, Okudela, K, Okuzaki, D, Motooka, D, Kanai, M, Naito, T, Yamamoto, K, Wang, QS, Saiki, R, Ishihara, R, Matsubara, Y, Hamamoto, J, Hayashi, H, Yoshimura, Y, Tachikawa, N, Yanagita, E, Hyugaji, T, Shimizu, E, Katayama, K, Kato, Y, Morita, T, Takahashi, K, Harada, N, Naito, T, Hiki, M, Matsushita, Y, Takagi, H, Aoki, R, Nakamura, A, Harada, S, Sasano, H, Kabata, H, Masaki, K, Kamata, H, Ikemura, S, Chubachi, S, Okamori, S, Terai, H, Morita, A, Asakura, T, Sasaki, J, Morisaki, H, Uwamino, Y, Nanki, K, Uchida, S, Uno, S, Nishimura, T, Ishiguro, T, Isono, T, Shibata, S, Matsui, Y, Hosoda, C, Takano, K, Nishida, T, Kobayashi, Y, Takaku, Y, Takayanagi, N, Ueda, S, Tada, A, Miyawaki, M, Yamamoto, M, Yoshida, E, Hayashi, R, Nagasaka, T, Arai, S, Kaneko, Y, Sasaki, K, Tagaya, E, Kawana, M, Arimura, K, Takahashi, K, Anzai, T, Ito, S, Endo, A, Uchimura, Y, Miyazaki, Y, Honda, T, Tateishi, T, Tohda, S, Ichimura, N, Sonobe, K, Sassa, CT, Nakajima, J, Nakano, Y, Nakajima, Y, Anan, R, Arai, R, Kurihara, Y, Harada, Y, Nishio, K, Ueda, T, Azuma, M, Saito, R, Sado, T, Miyazaki, Y, Sato, R, Haruta, Y, Nagasaki, T, Yasui, Y, Hasegawa, Y, Mutoh, Y, Kimura, T, Sato, T, Takei, R, Hagimoto, S, Noguchi, Y, Yamano, Y, Sasano, H, Ota, S, Nakamori, Y, Yoshiya, K, Saito, F, Yoshihara, T, Wada, D, Iwamura, H, Kanayama, S, Maruyama, S, Yoshiyama, T, Ohta, K, Kokuto, H, Ogata, H, Tanaka, Y, Arakawa, K, Shimoda, M, Osawa, T, Tateno, H, Hase, I, Yoshida, S, Suzuki, S, Kawada, M, Horinouchi, H, Saito, F, Mitamura, K, Hagihara, M, Ochi, J, Uchida, T, Baba, R, Arai, D, Ogura, T, Takahashi, H, Hagiwara, S, Nagao, G, Konishi, S, Nakachi, I, Murakami, K, Yamada, M, Sugiura, H, Sano, H, Matsumoto, S, Kimura, N, Ono, Y, Baba, H, Suzuki, Y, Nakayama, S, Masuzawa, K, Namba, S, Suzuki, K, Naito, Y, Liu, YC, Takuwa, A, Sugihara, F, Wing, JB, Sakakibara, S, Hizawa, N, Shiroyama, T, Miyawaki, S, Kawamura, Y, Nakayama, A, Matsuo, H, Maeda, Y, Nii, T, Noda, Y, Niitsu, T, Adachi, Y, Enomoto, T, Amiya, S, Hara, R, Yamaguchi, Y, Murakami, T, Kuge, T, Matsumoto, K, Yamamoto, Y, Yamamoto, M, Yoneda, M, Kishikawa, T, Yamada, S, Kawabata, S, Kijima, N, Takagaki, M, Sasa, N, Ueno, Y, Suzuki, M, Takemoto, N, Eguchi, H, Fukusumi, T, Imai, T, Fukushima, M, Kishima, H, Inohara, H, Tomono, K, Kato, K, Takahashi, M, Matsuda, F, Hirata, H, Takeda, Y, Koh, H, Manabe, T, Funatsu, Y, Ito, F, Fukui, T, Shinozuka, K, Kohashi, S, Miyazaki, M, Shoko, T, Kojima, M, Adachi, T, Ishikawa, M, Takahashi, K, Inoue, T, Hirano, T, Kobayashi, K, Takaoka, H, Watanabe, K, Miyazawa, N, Kimura, Y, Sado, R, Sugimoto, H, Kamiya, A, Kuwahara, N, Fujiwara, A, Matsunaga, T, Sato, Y, Okada, T, Hirai, Y, Kawashima, H, Narita, A, Niwa, K, Sekikawa, Y, Nishi, K, Nishitsuji, M, Tani, M, Suzuki, J, Nakatsumi, H, Ogura, T, Kitamura, H, Hagiwara, E, Murohashi, K, Okabayashi, H, Mochimaru, T, Nukaga, S, Satomi, R, Oyamada, Y, Mori, N, Baba, T, Fukui, Y, Odate, M, Mashimo, S, Makino, Y, Yagi, K, Hashiguchi, M, Kagyo, J, Shiomi, T, Fuke, S, Saito, H, Tsuchida, T, Fujitani, S, Takita, M, Morikawa, D, Yoshida, T, Izumo, T, Inomata, M, Kuse, N, Awano, N, Tone, M, Ito, A, Nakamura, Y, Hoshino, K, Maruyama, J, Ishikura, H, Takata, T, Odani, T, Amishima, M, Hattori, T, Shichinohe, Y, Kagaya, T, Kita, T, Ohta, K, Sakagami, S, Koshida, K, Hayashi, K, Shimizu, T, Kozu, Y, Hiranuma, H, Gon, Y, Izumi, N, Nagata, K, Ueda, K, Taki, R, Hanada, S, Kawamura, K, Ichikado, K, Nishiyama, K, Muranaka, H, Nakamura, K, Hashimoto, N, Wakahara, K, Koji, S, Omote, N, Ando, A, Kodama, N, Kaneyama, Y, Maeda, S, Kuraki, T, Matsumoto, T, Yokote, K, Nakada, TA, Abe, R, Oshima, T, Shimada, T, Harada, M, Takahashi, T, Ono, H, Sakurai, T, Shibusawa, T, Kimizuka, Y, Kawana, A, Sano, T, Watanabe, C, Suematsu, R, Sageshima, H, Yoshifuji, A, Ito, K, Takahashi, S, Ishioka, K, Nakamura, M, Masuda, M, Wakabayashi, A, Watanabe, H, Ueda, S, Nishikawa, M, Chihara, Y, Takeuchi, M, Onoi, K, Shinozuka, J, Sueyoshi, A, Nagasaki, Y, Okamoto, M, Ishihara, S, Shimo, M, Tokunaga, Y, Kusaka, Y, Ohba, T, Isogai, S, Ogawa, A, Inoue, T, Fukuyama, S, Eriguchi, Y, Yonekawa, A, Kan, OK, Matsumoto, K, Kanaoka, K, Ihara, S, Komuta, K, Inoue, Y, Chiba, S, Yamagata, K, Hiramatsu, Y, Kai, H, Asano, K, Oguma, T, Ito, Y, Hashimoto, S, Yamasaki, M, Kasamatsu, Y, Komase, Y, Hida, N, Tsuburai, T, Oyama, B, Takada, M, Kanda, H, Kitagawa, Y, Fukuta, T, Miyake, T, Yoshida, S, Ogura, S, Abe, S, Kono, Y, Togashi, Y, Takoi, H, Kikuchi, R, Ogawa, S, Ogata, T, Ishihara, S, Kanehiro, A, Ozaki, S, Fuchimoto, Y, Wada, S, Fujimoto, N, Nishiyama, K, Terashima, M, Beppu, S, Yoshida, K, Narumoto, O, Nagai, H, Ooshima, N, Motegi, M, Umeda, A, Miyagawa, K, Shimada, H, Endo, M, Ohira, Y, Watanabe, M, Inoue, S, Igarashi, A, Sato, M, Sagara, H, Tanaka, A, Ohta, S, Kimura, T, Shibata, Y, Tanino, Y, Nikaido, T, Minemura, H, Sato, Y, Yamada, Y, Hashino, T, Shinoki, M, Iwagoe, H, Takahashi, H, Fujii, K, Kishi, H, Kanai, M, Imamura, T, Yamashita, T, Yatomi, M, Maeno, T, Hayashi, S, Takahashi, M, Kuramochi, M, Kamimaki, I, Tominaga, Y, Ishii, T, Utsugi, M, Ono, A, Tanaka, T, Kashiwada, T, Fujita, K, Saito, Y, Seike, M, Watanabe, H, Matsuse, H, Kodaka, N, Nakano, C, Oshio, T, Hirouchi, T, Makino, S, Egi, M, The Biobank Japan Project, Omae, Y, Nannya, Y, Ueno, T, Katayama, K, Ai, M, Fukui, Y, Kumanogoh, A, Sato, T, Hasegawa, N, Tokunaga, K, Ishii, M, Koike, R, Kitagawa, Y, Kimura, A, Imoto, S, Miyano, S, Ogawa, S, Kanai, T, Fukunaga, K and Okada, Y (2022) DOCK2 is involved in the host genetics and biology of severe COVID-19, Nature 609, 754760.CrossRefGoogle ScholarPubMed
Nelson, MR, Tipney, H, Painter, JL, Shen, J, Nicoletti, P, Shen, Y, Floratos, A, Sham, PC, Li, MJ, Wang, J, Cardon, LR, Whittaker, JC and Sanseau, P (2015) The support of human genetic evidence for approved drug indications. Nature Genetics 47(8), 856860.CrossRefGoogle ScholarPubMed
Nordgren, J, Sharma, S, Kambhampati, A, Lopman, B and Svensson, L (2016) Innate resistance and susceptibility to norovirus infection. PLoS Pathogens 12(4), e1005385.CrossRefGoogle ScholarPubMed
Pairo-Castineira, E, Clohisey, S, Klaric, L, Bretherick, AD, Rawlik, K, Pasko, D, Walker, S, Parkinson, N, Fourman, MH, Russell, CD, Furniss, J, Richmond, A, Gountouna, E, Wrobel, N, Harrison, D, Wang, B, Wu, Y, Meynert, A, Griffiths, F, Oosthuyzen, W, Kousathanas, A, Moutsianas, L, Yang, Z, Zhai, R, Zheng, C, Grimes, G, Beale, R, Millar, J, Shih, B, Keating, S, Zechner, M, Haley, C, Porteous, DJ, Hayward, C, Yang, J, Knight, J, Summers, C, Shankar-Hari, M, Klenerman, P, Turtle, L, Ho, A, Moore, SC, Hinds, C, Horby, P, Nichol, A, Maslove, D, Ling, L, McAuley, D, Montgomery, H, Walsh, T, Pereira, AC, Renieri, A, Gen, OI, Investigators, IC, Initiative, C-HG, Me, I, Investigators, B, Gen, CI, Shen, X, Ponting, CP, Fawkes, A, Tenesa, A, Caulfield, M, Scott, R, Rowan, K, Murphy, L, PJM, Openshaw, Semple, MG, Law, A, Vitart, V, Wilson, JF and Baillie, JK (2021) Genetic mechanisms of critical illness in COVID-19. Nature 591(7848), 9298.CrossRefGoogle ScholarPubMed
Pendu, JL, Breiman, A, Rocher, J, Dion, M and Ruvoen-Clouet, N (2021) ABO blood types and COVID-19: Spurious, anecdotal, or truly important relationships? A reasoned review of available data Viruses 13(2), 160.CrossRefGoogle ScholarPubMed
Ray, JG, Schull, MJ, Vermeulen, MJ and Park, AL (2021) Association between ABO and Rh blood groups and SARS-CoV-2 infection or severe COVID-19 illness: A population-based cohort study. Annals of Internal Medicine 174(3), 308315.CrossRefGoogle ScholarPubMed
Ren, Z, Wang, H, Cui, G, Lu, H, Wang, L, Luo, H, Chen, X, Ren, H, Sun, R, Liu, W, Liu, X, Liu, C, Li, A, Wang, X, Rao, B, Yuan, C, Zhang, H, Sun, J, Chen, X, Li, B, Hu, C, Wu, Z, Yu, Z, Kan, Q and Li, L (2021) Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut 70(7), 12531265.CrossRefGoogle ScholarPubMed
Roberts, GHL, Partha, R, Rhead, B, Knight, SC, Park, DS, Coignet, MV, Zhang, M, Berkowitz, N, Turrisini, DA, Gaddis, M, McCurdy, SR, Pavlovic, M, Ruiz, L, Sass, C, Ancestry, DNAST, Baltzell, AKH, Guturu, H, Girshick, AR, Ball, CA, Hong, EL and Rand, KA (2022) Expanded COVID-19 phenotype definitions reveal distinct patterns of genetic association and protective effects. Nature Genetics 54(4), 374381.CrossRefGoogle ScholarPubMed
Ruhlemann, MC, Hermes, BM, Bang, C, Doms, S, Moitinho-Silva, L, Thingholm, LB, Frost, F, Degenhardt, F, Wittig, M, Kassens, J, Weiss, FU, Peters, A, Neuhaus, K, Volker, U, Volzke, H, Homuth, G, Weiss, S, Grallert, H, Laudes, M, Lieb, W, Haller, D, Lerch, MM, Baines, JF and Franke, A (2021) Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nature Genetics 53(2), 147155.CrossRefGoogle ScholarPubMed
Russell, AE, Ford, T, Gunnell, D, Heron, J, Joinson, C, Moran, P, Relton, C, Suderman, M, Hemani, G and Mars, B (2020) Investigating evidence for a causal association between inflammation and self-harm: A multivariable Mendelian randomisation study. Brain, Behavior, and Immunity 89, 4350.CrossRefGoogle ScholarPubMed
Sabater-Lleal, M, Huffman, JE, de Vries, PS, Marten, J, Mastrangelo, MA, Song, C, Pankratz, N, Ward-Caviness, CK, Yanek, LR, Trompet, S, Delgado, GE, Guo, X, Bartz, TM, Martinez-Perez, A, Germain, M, de Haan, HG, Ozel, AB, Polasek, O, Smith, AV, Eicher, JD, Reiner, AP, Tang, W, Davies, NM, Stott, DJ, Rotter, JI, Tofler, GH, Boerwinkle, E, de Maat, MPM, Kleber, ME, Welsh, P, Brody, JA, Chen, MH, Vaidya, D, Soria, JM, Suchon, P, van Hylckama Vlieg, A, Desch, KC, Kolcic, I, Joshi, PK, Launer, LJ, Harris, TB, Campbell, H, Rudan, I, Becker, DM, Li, JZ, Rivadeneira, F, Uitterlinden, AG, Hofman, A, Franco, OH, Cushman, M, Psaty, BM, Morange, PE, McKnight, B, Chong, MR, Fernandez-Cadenas, I, Rosand, J, Lindgren, A, INVENT Consortium, MEGASTROKE Consortium of the International Stroke Genetics Consortium, Gudnason, V, Wilson, JF, Hayward, C, Ginsburg, D, Fornage, M, Rosendaal, FR, Souto, JC, Becker, LC, Jenny, NS, Marz, W, Jukema, JW, Dehghan, A, Tregouet, DA, Morrison, AC, Johnson, AD, O’Donnell, CJ, Strachan, DP, Lowenstein, CJ and Smith, NL (2019) Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels. Circulation 139(5), 620635.CrossRefGoogle ScholarPubMed
Sardu, C, Marfella, R, Maggi, P, Messina, V, Cirillo, P, Codella, V, Gambardella, J, Sardu, A, Gatta, G, Santulli, G and Paolisso, G (2020) Implications of AB0 blood group in hypertensive patients with covid-19. BMC Cardiovascular Disorders 20(1), 373.CrossRefGoogle ScholarPubMed
Sarkar, A, Harty, S, Moeller, AH, Klein, SL, Erdman, SE, Friston, KJ and Carmody, RN (2021) The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends in Molecular Medicine 27(12), 11151134.CrossRefGoogle ScholarPubMed
Shelton, JF, Shastri, AJ, Fletez-Brant, K, The 23andMe COVID-19 Team, Aslibekyan, S and Auton, A (2022) The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nature Genetics 54(2), 121124.CrossRefGoogle ScholarPubMed
Shelton, JF, Shastri, AJ, Ye, C, Weldon, CH, Filshtein-Sonmez, T, Coker, D, Symons, A, Esparza-Gordillo, J, The 23andMe COVID-19 Team, Aslibekyan, S and Auton, A (2021) Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nature Genetics 53(6), 801808.CrossRefGoogle ScholarPubMed
Smith, NL, Chen, MH, Dehghan, A, Strachan, DP, Basu, S, Soranzo, N, Hayward, C, Rudan, I, Sabater-Lleal, M, Bis, JC, de Maat, MP, Rumley, A, Kong, X, Yang, Q, Williams, FM, Vitart, V, Campbell, H, Malarstig, A, Wiggins, KL, Van Duijn, CM, McArdle, WL, Pankow, JS, Johnson, AD, Silveira, A, McKnight, B, Uitterlinden, AG, Wellcome Trust Case Control Consortium, Aleksic, N, Meigs, JB, Peters, A, Koenig, W, Cushman, M, Kathiresan, S, Rotter, JI, Bovill, EG, Hofman, A, Boerwinkle, E, Tofler, GH, Peden, JF, Psaty, BM, Leebeek, F, Folsom, AR, Larson, MG, Spector, TD, Wright, AF, Wilson, JF, Hamsten, A, Lumley, T, Witteman, JC, Tang, W, O’Donnell, CJ (2010) Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (cohorts for heart and aging research in genome epidemiology) consortium. Circulation 121(12), 13821392.CrossRefGoogle ScholarPubMed
So, HC, Gui, AH, Cherny, SS and Sham, PC (2011) Evaluating the heritability explained by known susceptibility variants: A survey of ten complex diseases. Genetic Epidemiology 35(5), 310317.CrossRefGoogle ScholarPubMed
Solmaz, I and Arac, S (2021) ABO blood groups in COVID-19 patients; cross-sectional study. International Journal of Clinical Practice 75(4), e13927.CrossRefGoogle ScholarPubMed
Souilmi, Y, Lauterbur, ME, Tobler, R, Huber, CD, Johar, AS, Moradi, SV, Johnston, WA, Krogan, NJ, Alexandrov, K and Enard, D (2021) An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Current Biology 31(16), 35043514.e9.CrossRefGoogle ScholarPubMed
Stowell, SR and Stowell, CP (2019) Biologic roles of the ABH and Lewis histo-blood group antigens part II: Thrombosis, cardiovascular disease and metabolism. Vox Sanguinis 114(6), 535552.CrossRefGoogle ScholarPubMed
Suhre, K, Arnold, M, Bhagwat, AM, Cotton, RJ, Engelke, R, Raffler, J, Sarwath, H, Thareja, G, Wahl, A, DeLisle, RK, Gold, L, Pezer, M, Lauc, G, Selim, MAE-D, Mook-Kanamori, DO, Al-Dous, EK, Mohamoud, YA, Malek, J, Strauch, K, Grallert, H, Peters, A, Kastenmuller, G, Gieger, C and Graumann, J (2017) Connecting genetic risk to disease end points through the human blood plasma proteome. Nature Communications 8, 14357.CrossRefGoogle ScholarPubMed
Timmann, C, Thye, T, Vens, M, Evans, J, May, J, Ehmen, C, Sievertsen, J, Muntau, B, Ruge, G, Loag, W, Ansong, D, Antwi, S, Asafo-Adjei, E, Nguah, SB, Kwakye, KO, Akoto, AO, Sylverken, J, Brendel, M, Schuldt, K, Loley, C, Franke, A, Meyer, CG, Agbenyega, T, Ziegler, A and Horstmann, RD (2012) Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489(7416), 443446.CrossRefGoogle ScholarPubMed
Vasan, SK, Rostgaard, K, Majeed, A, Ullum, H, Titlestad, KE, Pedersen, OB, Erikstrup, C, Nielsen, KR, Melbye, M, Nyren, O, Hjalgrim, H and Edgren, G (2016) ABO blood group and risk of thromboembolic and arterial disease: A study of 1.5 million blood donors. Circulation 133(15), 14491457; discussion 1457.CrossRefGoogle ScholarPubMed
Vuckovic, D, Bao, EL, Akbari, P, Lareau, CA, Mousas, A, Jiang, T, Chen, MH, Raffield, LM, Tardaguila, M, Huffman, JE, Ritchie, SC, Megy, K, Ponstingl, H, Penkett, CJ, Albers, PK, Wigdor, EM, Sakaue, S, Moscati, A, Manansala, R, Lo, KS, Qian, H, Akiyama, M, Bartz, TM, Ben-Shlomo, Y, Beswick, A, Bork-Jensen, J, Bottinger, EP, Brody, JA, van Rooij, FJA, Chitrala, KN, Wilson, PWF, Choquet, H, Danesh, J, Di Angelantonio, E, Dimou, N, Ding, J, Elliott, P, Esko, T, Evans, MK, Felix, SB, Floyd, JS, Broer, L, Grarup, N, Guo, MH, Guo, Q, Greinacher, A, Haessler, J, Hansen, T, Howson, JMM, Huang, W, Jorgenson, E, Kacprowski, T, Kahonen, M, Kamatani, Y, Kanai, M, Karthikeyan, S, Koskeridis, F, Lange, LA, Lehtimaki, T, Linneberg, A, Liu, Y, Lyytikainen, LP, Manichaikul, A, Matsuda, K, Mohlke, KL, Mononen, N, Murakami, Y, Nadkarni, GN, Nikus, K, Pankratz, N, Pedersen, O, Preuss, M, Psaty, BM, Raitakari, OT, Rich, SS, Rodriguez, BAT, Rosen, JD, Rotter, JI, Schubert, P, Spracklen, CN, Surendran, P, Tang, H, Tardif, JC, Ghanbari, M, Volker, U, Volzke, H, Watkins, NA, Weiss, S, Program, VAMV, Cai, N, Kundu, K, Watt, SB, Walter, K, Zonderman, AB, Cho, K, Li, Y, Loos, RJF, Knight, JC, Georges, M, Stegle, O, Evangelou, E, Okada, Y, Roberts, DJ, Inouye, M, Johnson, AD, Auer, PL, Astle, WJ, Reiner, AP, Butterworth, AS, Ouwehand, WH, Lettre, G, Sankaran, VG and Soranzo, N (2020) The polygenic and monogenic basis of blood traits and diseases. Cell 182(5), 12141231.e11.CrossRefGoogle ScholarPubMed
Wald, NJ and Old, R (2019) The illusion of polygenic disease risk prediction. Genetics in Medicine 21(8), 17051707.CrossRefGoogle ScholarPubMed
Wang, B, Zhang, L, Wang, Y, Dai, T, Qin, Z, Zhou, F and Zhang, L (2022) Alterations in microbiota of patients with COVID-19: Potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy 7(1), 143.CrossRefGoogle ScholarPubMed
Williams, FM, Carter, AM, Hysi, PG, Surdulescu, G, Hodgkiss, D, Soranzo, N, Traylor, M, Bevan, S, Dichgans, M, Rothwell, PM, Sudlow, C, Farrall, M, Silander, K, Kaunisto, M, Wagner, P, Saarela, O, Kuulasmaa, K, Virtamo, J, Salomaa, V, Amouyel, P, Arveiler, D, Ferrieres, J, Wiklund, PG, Ikram, MA, Hofman, A, Boncoraglio, GB, Parati, EA, Helgadottir, A, Gretarsdottir, S, Thorsteinsdottir, U, Thorleifsson, G, Stefansson, K, Seshadri, S, DeStefano, A, Gschwendtner, A, Psaty, B, Longstreth, W, Mitchell, BD, Cheng, YC, Clarke, R, Ferrario, M, Bis, JC, Levi, C, Attia, J, Holliday, EG, Scott, RJ, Fornage, M, Sharma, P, Furie, KL, Rosand, J, Nalls, M, Meschia, J, Mosely, TH, Evans, A, Palotie, A, Markus, HS, Grant, PJ, Spector, TD, EuroCLOT Investigators, Wellcome Trust Case Control Consortium 2, MOnica Risk, Genetics, Archiving and Monograph, MetaStroke and International Stroke Genetics Consortium (2013) International stroke genetics, ischemic stroke is associated with the ABO locus: The EuroCLOT study. Annals of Neurology 73(1), 1631.CrossRefGoogle ScholarPubMed
Wu, SC, Arthur, CM, Wang, J, Verkerke, H, Josephson, CD, Kalman, D, Roback, JD, Cummings, RD and Stowell, SR (2021) The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Advances 5(5), 13051309.CrossRefGoogle ScholarPubMed
Wu, P, Ding, L, Li, X, Liu, S, Cheng, F, He, Q, Xiao, M, Wu, P, Hou, H, Jiang, M, Long, P, Wang, H, Liu, L, Qu, M, Shi, X, Jiang, Q, Mo, T, Ding, W, Fu, Y, Han, S, Huo, X, Zeng, Y, Zhou, Y, Zhang, Q, Ke, J, Xu, X, Ni, W, Shao, Z, Wang, J, Liu, P, Li, Z, Jin, Y, Zheng, F, Wang, F, Liu, L, Li, W, Liu, K, Peng, R, Xu, X, Lin, Y, Gao, H, Shi, L, Geng, Z, Mu, X, Yan, Y, Wang, K, Wu, D, Hao, X, Cheng, S, Qiu, G, Guo, H, Li, K, Chen, G, Sun, Z, Lin, X, Jin, X, Wang, F, Sun, C and Wang, C (2021) Trans-ethnic genome-wide association study of severe COVID-19. Communications Biology 4(1), 1034.CrossRefGoogle ScholarPubMed
Yeoh, YK, Zuo, T, Lui, GC, Zhang, F, Liu, Q, Li, AY, Chung, AC, Cheung, CP, Tso, EY, Fung, KS, Chan, V, Ling, L, Joynt, G, Hui, DS, Chow, KM, Ng, SSS, Li, TC, Ng, RW, Yip, TC, Wong, GL, Chan, FK, Wong, CK, Chan, PK and Ng, SC (2021) Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70(4), 698706.CrossRefGoogle ScholarPubMed
Zhang, L, Huang, B, Xia, H, Fan, H, Zhu, M, Zhu, L, Zhang, H, Tao, X, Cheng, S and Chen, J (2020) Retrospective analysis of clinical features in 134 coronavirus disease 2019 cases. Epidemiology and Infection 148, e199.CrossRefGoogle ScholarPubMed
Zhao, J, Yang, Y, Huang, H, Li, D, Gu, D, Lu, X, Zhang, Z, Liu, L, Liu, T, Liu, Y, He, Y, Sun, B, Wei, M, Yang, G, Wang, X, Zhang, L, Zhou, X, Xing, M and Wang, PG (2021) Relationship between the ABO blood Group and the coronavirus disease 2019 (COVID-19) susceptibility. Clinical Infectious Diseases 73(2), 328331.CrossRefGoogle ScholarPubMed
Zietz, M, Zucker, J and Tatonetti, NP (2020) Associations between blood type and COVID-19 infection, intubation, and death. Nature Communications 11(1), 5761.CrossRefGoogle ScholarPubMed
Zuo, T, Zhang, F, Lui, GCY, Yeoh, YK, Li, AYL, Zhan, H, Wan, Y, Chung, ACK, Cheung, CP, Chen, N, Lai, CKC, Chen, Z, Tso, EYK, Fung, KSC, Chan, V, Ling, L, Joynt, G, Hui, DSC, Chan, FKL, Chan, PKS and Ng, SC (2020) Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159(3), 944955.e8.CrossRefGoogle ScholarPubMed
Figure 0

Table 1. Genome-wide significant (P < 5 × 10−8) susceptibility loci for SARS-CoV-2 infection and/or COVID-19 disease severity identified in large-scale (hypothesis-free) genome-wide analyses to date (as of August 2022) (Ellinghaus et al., 2020; COVID-19 Host Genetics Initiative, 2021; Pairo-Castineira et al., 2021; Shelton et al., 2021; Wu et al., 2021; COVID-19 Host Genetics Initiative, 2022; Cruz et al., 2022; Degenhardt et al., 2022; Horowitz et al., 2022; Namkoong et al., 2022; Roberts et al., 2022)

Figure 1

Table 2. Genome-wide significant associations between genetic variants at the ABO gene locus and SARS-CoV-2 infection and/or COVID-19 disease severity (including other important phenotypic associations for the variants)

Figure 2

Figure 1. Summary of results from meta-analysis association studies at the 9q34.2 locus (ABO) conducted by the COVID-19 Host Genetics Initiative (HGI). Meta-analyses of association data show an association of the 9q34.2 locus (ABO) with (i) critical severity of illness, (ii) hospitalization and (iii) infection, as described in COVID-19 Host Genetics Initiative (2022). Upper Manhattan plot: association results for 8,779 critically ill COVID-19 patients versus 1,001,875 population controls. Middle Manhattan plot: association results for 24,274 hospitalized COVID-19 patients versus 2,061,529 population controls. Lower Manhattan plot: association results for 112,612 SARS-CoV-2 infected individuals versus 2,474,079 population controls. X-axis: chromosome positions and gene annotations on human genome build hg38. Y-axis: meta-analysis association p-values (−log10p) of genetic markers. Plots were generated with the COVID-19 Host Genetics Initiative Browser (https://app.covid19hg.org; release 6).

Figure 3

Table 3. Studies of mechanistic and pathophysiological hypotheses of ABO blood group effects as well as clinical findings from COVID-19 patient subgroup studies (not exhaustive) suggest an association between ABO blood groups and SARS-CoV-2 infection and COVID-19 disease severity

Figure 4

Figure 2. Two predominant hypotheses of possible mechanisms involving ABO blood group-related antigens: (A) The ABO-compatibility-dependence model (or ABO-interference) and (B) the ABO-dependent intrinsic model. The ABO-compatibility dependence model was recently modeled by Ellis (2021) under different assumptions and compared with observational healthcare data (Zietz et al., 2020; Zhao et al., 2021) and GWAS data from the Severe COVID-19 GWAS Group (Ellinghaus et al., 2020). Both models have been further evaluated by Boukhari et al. (2021) in a French study population of 666 individuals (333 index persons and their spouses) of known ABO blood type with a high risk of SARS-CoV-2 transmission (hospital employees) as well as receptor-binding domain (RBD) protein binding experiments in cell lines and saliva samples from individuals of known ABO and secretor phenotypes. For the ABO-compatibility-dependence model, ρ represents the relative probability of virus transmission between an infected index person and an ABO-incompatible contact (impeded transmission; pairs denoted with “I”) and was estimated to be 40% on average (between 20 and 55% depending on ABO blood group frequencies and relative risk ratios in different countries) by Ellis (2021). Boukhari et al. estimated a decrease of 41% in ABO-incompatible pairs. The ABO-dependent intrinsic hypothesis remains controversial because of conflicting study results (Boukhari et al., 2021; Wu et al., 2021). n.a., not available. Figure based on Boukhari et al. (2021) and extended.

Author comment: COVID-19 host genetics and ABO blood group susceptibility — R0/PR1

Comments

Dear Editors of Cambridge Prisms: Precision Medicine,

Thank you very much for inviting me to write a review article on "COVID-19 host genetics and ABO blood group susceptibility". Please find attached the review article you requested. I look forward to your response and I am happy to answer any further questions you may have.

Yours sincerely,

David Ellinghaus

Review: COVID-19 host genetics and ABO blood group susceptibility — R0/PR2

Conflict of interest statement

Reviewer declares none.

Comments

Comments to Author: Dr. Ellinghaus, one of the early leaders of COVID-19 genetics research, provides a timely look-back review on the evidence for the role genetics in the infection and clinical sequelae, with particular focus on the ABO blood group antigen variability and its roles.

1) One point the author does not clearly tackle is the extent of clinical applicability. It is difficult to address with surety but given the journal is focused on Precision Medicine it seems relevant to try. It is addressed a bit in the description of modest effect sizes (though larger than the other GWAS variants and more widely replicated). There is I think the point made at various stages that if transmission is widespread this may overwhelm any moderate protective effects. In the clinical context comorbid risk factors may also play a much greater role in triage and risk. Thus, perhaps the statement should be made that in the face of these factors there is not strong evidence at this time for a need to apply genetic risk factors in the clinic for SARS-Cov2 at this time? (translation of SNP genetic tests into the clinic has a spotty record even for relatively strong effects or PRS) Perhaps the point is more what the genetics can teach us about the biology, etiology and potential future treatment strategies?

2) Since the majority of the focus of the review is on the role of ABO blood group antigens, I believe it is worthwhile to spend a bit more space reviewing the longer history of ABO antigens and respiratory viruses, as the emergence of this relationship is not new to SARS-Cov2. There may be some scientific parables here that are useful to consider for future viruses that will evolve and face humanity. The evidence was long for the role of ABO in viruses but in some ways the research may have gone quiet in the area for more than 10 years until SARS-Cov2 emerged with its linkage. I suggest you split out a separate paragraph of section covering this history. Since you have only 1 Figure you could also consider including a Figure with a Historical timeline of ABO in relation to viruses (of course focusing most of the timeline on recent developments). Personally, my opinion is that a review paper should provide some longer focus on the history of the science, and sometimes teach us how and when the breadcrumbs presented themselves in the past. Some suggestions

a. You cited Guillon et al. 2008 (PMID18818423), an important work. However, that work was predicated in part on a study of the Hospital Ward in Hong Kong where SARS-Cov1 broke out in March 2003 and was recognized. Cheng et al. 2005 (JAMA, PMID 15784866) studied 45 staff members on that ward for their Cov1 antibody titer and ABO antigen group (based on prior observations of difference in susceptibility to Norwalk virus and differences in H. pylori infection rates). While the sample was small (34 exposed with confirmed antigen and symptoms; 11 non-infected/seronegative after 2 months); they found a significant and large protective effect of Group O antigen (OR 0.18). I believe it is worth citing and discussing that foundational clinical observation

b. More broadly there is additional history of ABO and infections that can be discussed. You do define/cite this briefly in relation to malaria and review papers but it could be worth a brief further exploration. Due to R.A. Fisher defining the strong heritability and it being one of the early measurable polymorphic factors, and its pleiotropic effect in a variety of conditions including thrombosis, there were many studies of ABO even going back to the 1950s and 1960s. McDonald & Zuckerman published in 1962 (BMJ; PMID 20789459) what was really quite a massive study for the time on blood group antigens in 1,685 patients in the Royal Air Force with viral infections and 41,708 controls for allele distribution. They report protective effects of O antigen for Adenovirus but increased risk for Influenza A2. In 1967 Tyrrell, Peto & King showed that arrivals of an isolate island population via Cape Town into Britain has much greater rates of influenza A among A/B/AB groups than the O group (J.Hyg(Lond); PMID 4293359). At the same time there are some seemingly conflicted articles in the 1960s,70s, and 80s mostly centered around influenza virus. Mackenzi & Fimmerl (J Hyg.(Camb) 1978 PMID 621379) discuss some of the conflicting works, and additional data suggesting some B/O differences.

c. The most comprehensive review on ABO and bacterial, viral and fungal infections in earlier periods that lays out the inconsistencies and controversies but argues for the overall importance is Berger, Young and Edbery (Eur J Clin Microbiol Infect Dis 1989 PMID 2506033).

d. Perhaps some of this history and the contradictory results is relevant to highlight and discuss in terms of the remaining questions and controversies of ABO and SARS-Cov2 as you well highlight, and the possible importance of study design to the prior study conclusions? As you highlight the French couple study (compatible/incompatible design) provides an example of an important study design to disentangle some controversies.

3) In terms of the early COVID-19 pandemic and genetic findings I think it is important again to place things correctly in historical perspective and give the appropriate credits due:

a. The first report of ABO group involvement appeared on medRxiv on March 9, 2020 from Fan et al. that reported much lower O group among n=101 fatalities in Wuhan China. The published paper with similar people (Fan is now a middle author) Lin Zhang et al. (Sep 3 2020; Cambridge Press: Epidemiol Infect) ended up being a retrospective on n=134 critically ill patients showing the similar O group protection for survival.

b. The work by Zhao et al. is a different but still quite important large retrospective work on 2,173 patients published on medRxiv later (March 11, 2020) and in the journal online Aug 4, 2020 (and in print 2021).

c. I believe both works are important and should be cited/differentiated with Fan/Zhang being just a few days earlier on preprint.

4) In re: to Table 1, I wonder if the APOE gene region/variants should be included or at least discussed somewhere? It was the first GWAS-significant signal observed for COVID-19 positivity (Kuo et al. 2020 PMID 32623451) in a sample with n>1,000 – whether the UKBB is considered 1 population may be an open question (to meeting your stated Table requirements). However, as Thibord et al. (2022 PMID 35224516) showed the signal of susceptibility in UKBB degraded over time as the pandemic evolved and repeated GWAS are run in UKBB with increasingly younger age cases. Thibord et al. showed a GWAS-significant signal with COVID mortality with APOE, and a significant age-interaction, and persistence of effects after adjusting for Alzheimer’s disease and CVD factors, though no association with severity was observed in the COVID-19 hgi analysis at that time. Overall it presents a puzzling picture and could be due to either confounding factors, or the need to precisely define the clinical population (something likely lost in the broader analyses such as COVID-hgi). I might dismiss it as confounding or a false positive, but recent work (Zhang et al. 2022 Signal Transduct Target Ther PMID 35915083) demonstrates a functional interaction of APOE with ACE2 in SARS Cov-2 viral entry.

5) In Table 2 (given the Title) some associations are not specifically within the context of COVID-19. That may be OK but perhaps it is important to be clearer about this/ For instance the monocyte counts, VTE, F8, vWF etc. are not in COVID patients and mostly predate the pandemic. Perhaps you should rename the Table to include other important associations for the same variants? The Table could be slightly updated for the new VTE GWAS (Thibord et al. 2022 Circulation PMID 36154123) which essentially combined references 66 and 67 with further replication and found strongest association with rs505922 (P<1.55E-1043), though as pointed out correlated with rs687289.

6) The paper is very well written and structured. Minor suggestions/typos:

a. P.8 “Therefore, future model” -> “Therefore, future models”

b. P.8 “Omikron” -> is it the British spelling? I think globally it has more often been spelled as Omicron.

Review: COVID-19 host genetics and ABO blood group susceptibility — R0/PR3

Conflict of interest statement

Reviewer declares none.

Comments

Comments to Author: This is a fine review summarizing existing studies and results for the association between the ABO locus and SARS-CoV-2. Consider rewording subsection titles (i.e. "The ABO blood group system in a nutshell" may appear informal). It would be beneficial to add a figure displaying Manhattan plots across various GWAS that implicated ABO as a candidate locus for infection and severity, respectively. The manuscript showed adequate attention to detail and consideration of pitfalls from reported associations, while also acknowledging consistency and repeatability in the ABO locus across studies.

Recommendation: COVID-19 host genetics and ABO blood group susceptibility — R0/PR4

Comments

Comments to Author: Dear Dr. Ellinghaus,

The manuscript was fully evaluated by two independent peer reviewers. Based on the advice received, I feel that your manuscript could be reconsidered for publication should you be prepared to incorporate minor revisions suggested by reviewers. We ask you to provide a detailed point-by-point response letter to concerns detailed by reviewers, highlighting your responses to the review comments and a description of the changes you have made to the manuscript.

Decision: COVID-19 host genetics and ABO blood group susceptibility — R0/PR5

Comments

No accompanying comment.

Author comment: COVID-19 host genetics and ABO blood group susceptibility — R1/PR6

Comments

Dear Prof. Dominiczak,

dear Editors of Cambridge Prisms: Precision Medicine,

please find enclosed the revised manuscript (with all changes in red) and a further point-by-point response that addresses the reviewers concerns.

I look forward to your decision and I am at your disposal for any further questions.

Yours sincerely,

David Ellinghaus

Review: COVID-19 host genetics and ABO blood group susceptibility — R1/PR7

Conflict of interest statement

Reviewer declares none.

Comments

Comments to Author: Excellent work in making all appropriate changes.

Review: COVID-19 host genetics and ABO blood group susceptibility — R1/PR8

Conflict of interest statement

Reviewer declares none.

Comments

Comments to Author: Not all comments were addressed in the revision, and a point-by-point revision response would have been preferred as a courtesy to the reviewers when revisions were not made to understand the thinking. However, the most salient revisions were made and I don't see the need to belabor minor points.

Recommendation: COVID-19 host genetics and ABO blood group susceptibility — R1/PR9

Comments

Comments to Author: Both independent reviewers have affirmed that the authors have provided sufficient responses to either all of their peer review comments or the most salient comments.

Decision: COVID-19 host genetics and ABO blood group susceptibility — R1/PR10

Comments

No accompanying comment.