Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T10:50:21.918Z Has data issue: false hasContentIssue false

Biomimetic protein-harpooning surfaces

Published online by Cambridge University Press:  06 April 2018

G. M. L. Messina*
Affiliation:
Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, Catania 95125, Italy
C. Bonaccorso*
Affiliation:
Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
A. Rapisarda
Affiliation:
Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
B. Castroflorio
Affiliation:
Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, Catania 95125, Italy
D. Sciotto
Affiliation:
Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
G. Marletta
Affiliation:
Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, Catania 95125, Italy
*
Address all correspondence to G. M. L. Messina at [email protected] and C. Bonaccorso at [email protected]
Address all correspondence to G. M. L. Messina at [email protected] and C. Bonaccorso at [email protected]
Get access

Abstract

Properly driving protein interactions with solid surfaces play a very important role in many natural processes, stimulating a great interest for the design of new biomaterials and medical devices. Despite the progress in this field, many further upgrades have to be achieved to better exploit the protein driving, in terms of control of amounts and conformation of the adsorbing proteins. In this paper, new biocompatible amino acid–calix[4]crown-5 bilayers were built as nano-templating surfaces, hosting a controlled number of anchoring sites, able to immobilize proteins in well-defined quantity, and the evaluated footprint data support the idea of oriented protein on analyzed substrates. The efficiency of the setup was tested for the particular case of antibacterial lysozyme adsorption on biocompatible surfaces.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Castner, D.G. and Ratner, B. D.: Biomedical surface science: foundations to frontiers. Surf. Sci. 500, 28 (2002).Google Scholar
2.Gray, J. J.: The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110 (2004).Google Scholar
3.Tuccitto, N., Giamblanco, N., Licciardello, A., and Marletta, G.: Patterning of lactoferrin using functional SAMs of iron complexes. Chem. Commun. 25, 2621 (2007).CrossRefGoogle Scholar
4.Kasemo, B.: Biological surface science. Surf. Sci. 500, 656 (2002).CrossRefGoogle Scholar
5.Satriano, C., Messina, G.M.L., Carnazza, S., Guglielmino, S., and Marletta, G.: Bacterial adhesion onto nanopatterned polymer surfaces. Mat. Sci. Eng. C 26, 942 (2006).Google Scholar
6.Manso Silvàn, M., Messina, G.M.L., Montero, I., Satriano, C., Garcìa Ruiz, J.P., and Marletta, G.: Aminofunctionalization and sub-micrometer patterning on silicon through silane doped agarose hydrogels. J. Mater. Chem. 19, 5226 (2009).Google Scholar
7.Fotia, C., Messina, G.M.L., Marletta, G., Baldini, N., and Ciapetti, G.: Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events. Eur. Cell Mater. 26, 133 (2013).CrossRefGoogle ScholarPubMed
8.Denis, F. A., Hanarp, P., Sutherland, D. S., Gold, J., Mustin, C., Rouxhet, P. G., and Dufrene, Y. F.: Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 18, 819 (2002).Google Scholar
9.Dettin, M., Zamuner, A., Roso, M., Gloria, A., Iucci, G., Messina, G.M.L., D'Amore, U., Marletta, G., Modesti, M., Castagniulo, I., and Brun, P.: Electrospun scaffolds for osteoblast cells: peptide-induced concentration-dependent improvements of polycaprolactone. PLoS ONE 10(9), e0137505 (2005).Google Scholar
10.Donovan, M. A., Yimer, Y. Y., Pfaendtner, J., Backus, E.H.G., Bonn, M., and Weidner, T.: Ultrafast reorientational dynamics of leucine at the air–water interface. J. Am. Chem. Soc. 138, 5226 (2016).Google Scholar
11.Roach, P., Farrar, D., and Perry, C. C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).Google Scholar
12.Wertz, C. F. and Santore, M. M.: Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 18, 1190 (2002).Google Scholar
13.Brun, P., Scorzeto, M., Vassanelli, S., Castagliuolo, I., Palù, G., Ghezzo, F., Messina, G.M.L., Iucci, G., Battaglia, V., Sivolella, S., Bagno, A., Polzonetti, G., Marletta, G., and Dettin, M.: Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta. Biomater. 9, 6105 (2013).Google Scholar
14.Neri, P., Sessler, J. L., and Wang, M.-X., eds. Calixarenes and Beyond (Springer International Publishing, Cham, 2016).Google Scholar
15.Vicens, J., Harrowfield, J., and Baklouti, L., eds. Calixarenes in the Nanoworld (Springer, The Netherlands, 2007).Google Scholar
16.Bonaccorso, C., Brancatelli, G., Forte, G., Arena, G., Geremia, S., Sciotto, D., and Sgarlata, C.: Factors driving the self-assembly of water-soluble calix[4]arene and gemini guests: a combined solution, computational and solid-state study. RSC Adv. 4, 53575 (2014).Google Scholar
17.Escudero, C., D'Urso, A., Lauceri, R., Bonaccorso, C., Sciotto, D., Di Bella, S., El-Hachemi, Z., Crusats, J., Ribò, J.M., and Purrello, R.: Hierarchical dependence of porphyrin self-aggregation: controlling and exploiting the complexity. J. Porphyr. Phthalocyanines 14, 708 (2010).CrossRefGoogle Scholar
18.Mecca, T., Messina, G. M. L., Marletta, G., and Cunsolo, F.: Novel pH responsive calix[8]arene hydrogelators: self-organization processes at a nanometric scale. Chem. Commun. 49, 2530 (2002).CrossRefGoogle Scholar
19.Bonaccorso, C., Brancatelli, G., Ballistreri, F. P., Geremia, S., Pappalardo, A., Tomaselli, G. A., Toscano, R. M., and Sciotto, D.: Novel chiral (salen)Mn(III) complexes containing a calix[4]arene unit in 1,3-alternate conformation as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes. Dalton Trans. 43, 2183 (2014).Google Scholar
20.Almeida, A.T., Salvadori, M.C., and Petri, D.F.S.: Enolase adsorption onto hydrophobic and hydrophilic solid substrates. Langmuir 18, 6914 (2002).Google Scholar
21.Park, C. S., Lee, H. J., Jamison, A. C., and Lee, T. R.: Robust maleimide-functionalized gold surfaces and nanoparticles generated using custom-designed bidentate adsorbates. Langmuir 32, 7306 (2016).Google Scholar
22.Béthencourt, M. I., Srisombat, L., Chinwangso, P., and Lee:, T. R. SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. Langmuir 25, 1265 (2009).Google Scholar
23.Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 (1996).Google Scholar
24.Feiler, A., Sahlholm, A., Sandberg, T., and Caldwell, K. D.: Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). J. Colloid Interface Sci. 315, 475 (2007).Google Scholar
25.Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 55, 206 (1959).CrossRefGoogle Scholar
26.Park, J.-Y., Kim, B.-C., and Park, S.-M.: Molecular recognition of protonated polyamines at calix[4]crown-5 self-assembled monolayer modified electrodes by impedance measurements. Anal. Chem. 79, 1890 (2007).Google Scholar
27.Rabe, M., Verdes, D., and Seeger, S.: Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface 87, 162 (2011).Google Scholar
28.Peng, Z.G., Hidajat, K., and Uddin, M.S.: Selective and sequential adsorption of bovine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles. J. Colloid Interface Sci. 11, 281 (2005).Google Scholar
29.Dismer, F. and Hubbuch, J.: A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. J. Chromatogr. A 312, 1149 (2007).Google Scholar
30.Kubiak, K., Adamczyk, Z., and Ocweieja, M.: Kinetics of silver nanoparticle deposition at PAH monolayers: reference QCM results. Langmuir 31, 2988 (2015).Google Scholar
Supplementary material: PDF

Messina et al. supplementary material

Messina et al. supplementary material 1

Download Messina et al. supplementary material(PDF)
PDF 1.3 MB