Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-25T19:53:49.100Z Has data issue: false hasContentIssue false

REDUCED QUIVER QUANTUM TOROIDAL ALGEBRAS

Published online by Cambridge University Press:  07 November 2024

Andrei Neguţ*
Affiliation:
EPFL, Institute of Mathematics, Lausanne, Switzerland and Simion Stoilow Institute of Mathematics, Bucharest, Romania

Abstract

We give a generators-and-relations description of the reduced versions of quiver quantum toroidal algebras, which act on the spaces of BPS states associated to (noncompact) toric Calabi–Yau threefolds X. As an application, we obtain a description of the K-theoretic Hall algebra of (the quiver with potential associated to) X, modulo torsion.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Davison, B., ‘Consistency conditions for brane tilings’, Journal of Algebra 338(1) (2011), 1-23.CrossRefGoogle Scholar
Enriquez, B., ‘On correlation functions of Drinfeld currents and shuffle algebras’, Transform. Groups 5(2) (2000), 111120.CrossRefGoogle Scholar
Feigin, B. and Odesski, A., ‘Quantized moduli spaces of the bundles on the elliptic curve and their applications’, in Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., vol. 35 (Kluwer Acad. Publ., Dordrecht, 2001), 123137.CrossRefGoogle Scholar
Galakhov, D., Li, W. and Yamazaki, M., ‘Toroidal and elliptic quiver BPS algebras and beyond’, J. High Energy Phys. 24 (2022).Google Scholar
Galakhov, D., Li, W. and Yamazaki, M., ‘Gauge/Bethe correspondence from quiver BPS algebras’, J. High Energy Phys. 119 (2022).Google Scholar
Kontsevich, M. and Soibelman, Y., ‘Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants’, Commun. Number Theory Phys. 5(2) (2011), 231352.CrossRefGoogle Scholar
Hanany, A., Herzog, C. and Vegh, D., ‘Brane tilings and exceptional collections’, J. High Energ. Phys. 27 (2006).Google Scholar
Hanany, A. and Vegh, D., ‘Quivers, tilings, branes and rhombi’, J. High Energ. Phys. 10 (2007).Google Scholar
Li, W. and Yamazaki, M., ‘Quiver Yangian from crystal melting’, J. High Energ. Phys. 35 (2020).Google Scholar
Mozgovoy, S. and Reineke, M., ‘On the noncommutative Donaldson–Thomas invariants arising from brane tilings’, Adv. Math. 223(5) (2010), 15211544.CrossRefGoogle Scholar
Neguţ, A., ‘Quantum loop groups for arbitrary quivers’, Preprint, (2022), ArXiv:2209.09089.Google Scholar
Neguţ, A., ‘Quantum loop groups for symmetric Cartan matrices’, Preprint, (2022), ArXiv:2207.05504.Google Scholar
Noshita, G. and Watanabe, A., ‘A note on quiver quantum toroidal algebra’, J. High Energ. Phys. 2022(11) (2022).Google Scholar
Noshita, G. and Watanabe, A., ‘Shifted quiver quantum toroidal algebra and subcrystal representations’, J. High Energ. Phys. 122 (2022).Google Scholar
Pădurariu, T., ‘ $K$ -theoretic Hall algebras of quivers with potential as Hopf algebras’, Int. Math. Res. Not. (2022).Google Scholar
Rapcak, M., Soibelman, Y., Yang, Y. and Zhao, G., ‘Cohomological Hall algebras, vertex algebras and instantons’, Comm. Math. Phys. 376(3) (2020), 18031873.CrossRefGoogle Scholar
Tsymbaliuk, A., ‘The affine Yangian of ${\widehat{\mathfrak{gl}}}_1$ revisited’, Adv. Math. 304 (2017), 583645.CrossRefGoogle Scholar