Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-28T19:24:16.522Z Has data issue: false hasContentIssue false

On traces of Bochner representable operators on the space of bounded measurable functions

Published online by Cambridge University Press:  11 January 2024

Marian Nowak
Affiliation:
Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland ([email protected])
Juliusz Stochmal
Affiliation:
Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Let Σ be a σ-algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let $\tau(B(\Sigma),ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function $f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction and preliminaries

Let Σ be a σ-algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω, equipped with the uniform norm $\|\cdot\|_\infty$. We assume that the field of scalars is either the set of real numbers or the set of complex numbers.

Let $ba(\Sigma)$ denote the Banach space of all bounded additive scalar-valued measures λ on Σ, equipped the total variation norm $\|\lambda\|:=|\lambda|(\Omega).$ The Banach dual $B(\Sigma)'$ of $B(\Sigma)$ can be identified with $ba(\Sigma)$ throughout the mapping

\begin{equation*} \Phi:ba(\Sigma)\ni\lambda\mapsto\Phi_\lambda\in B(\Sigma)', \end{equation*}

where $\Phi_\lambda(u):=\int_\Omega u(\omega)\,d\lambda$ for $u\in B(\Sigma)$ and $\|\Phi_\lambda\|=\|\lambda\|$. Let $ca(\Sigma)$ denote the closed subspace of $\,ba(\Sigma)$ consisting of all countably additive members of $ba(\Sigma)$.

From now on we assume that $(E,\|\cdot\|_E)$ is a Banach space and $(E',\|\cdot\|_{E'})$ denotes its dual. Assume that $m:\Sigma\rightarrow E$ is a finitely additive measure. By $|m|(A)$ (resp. $\|m\|(A)$) we denote the variation (resp. semivariation) of m on A (see [Reference Diestel and Uhl7, Definition 4, p. 2]). Then $\|m\|(A)\leq|m|(A)$ for $A\in\Sigma$.

If $T:B(\Sigma)\rightarrow E$ is a bounded linear operator, let

\begin{equation*} m_T(A)=T(\mathbb{1}_A)\ \ \mbox{for}\ \ A\in\Sigma. \end{equation*}

Then, $T(u)=\int_\Omega u(\omega)dm_T$ and $\|T\|=\|m_T\|(\Omega)$ (see [Reference Diestel and Uhl7, Theorem 13, p. 6]).

Different classes of linear operators $T:B(\Sigma)\rightarrow E$ (weakly compact, absolutely summing, nuclear, integral, σ-smooth) have been studied in numerous papers (see [Reference Diestel5], [Reference Diestel6], [Reference Diestel and Uhl7], [Reference Graves and Ruess11], [Reference Nowak18], [Reference Nowak17]).

For $\mu\in ca(\Sigma)^+$, let $L^1(\mu,E)$ denote the Banach space of µ-equivalence classes of all E-valued Bochner µ-integrable functions f on Ω, equipped with norm $\|f\|_1:=\int_\Omega\|f(\omega)\|_E \,d\mu$.

Following [Reference Tong26] we can consider a class of linear operators on $B(\Sigma)$.

Definition 1.1. We say that a linear operator $T:B(\Sigma)\rightarrow E$ is Bochner representable if there exist a measure $\mu\in ca(\Sigma)^+$ and a function $f\in L^1(\mu,E)$ so that

\begin{equation*} T(u)=\int_\Omega u(\omega)\,f(\omega)\,d\mu,\quad\mbox{for all } \ u\in B(\Sigma). \end{equation*}

The concept of nuclear operators between Banach spaces in due to Grothendieck [Reference Grothendieck12], [Reference Grothendieck13] (see also [Reference Yosida28, p. 279], [Reference Pietsch21, Chap. 3], [Reference Pietsch22], [Reference Diestel and Uhl7, Chap. 6], [Reference Drewnowski9, Chap. 5], [Reference Sofi25], [Reference Ryan23]).

Recall (see [Reference Yosida28, p. 279], [Reference Sofi25]) that a linear operator $T:B(\Sigma)\rightarrow E$ between Banach spaces $B(\Sigma)$ and E is said to be nuclear if there exist a bounded sequence $(\lambda_n)$ in $ba(\Sigma)$, a bounded sequence $(e_n)$ in E and a sequence $(\alpha_n)\in\ell^1$ so that

(1.1)\begin{equation} T(u)=\sum^\infty_{n=1}\alpha_n \Phi_{\lambda_n}(u)\,e_n,\quad\mbox{for all} \ u\in B(\Sigma). \end{equation}

Then the nuclear norm of T is defined by

\begin{equation*} \|T\|_{nuc}:=\inf\left\{\sum^\infty_{n=1} |\alpha_n|\,|\lambda_n|\,(\Omega)\, \|e_n\|_E\right\}, \end{equation*}

where the infimum is taken over all sequences $(\lambda_n)$ in $ba(\Sigma)$ and $(e_n)$ in E and $(\alpha_n)\in\ell^1$ such that T admits a representation (1.1).

Let ${\cal L}(B(\Sigma),E)$ denote the Banach space of all bounded linear operators from $B(\Sigma)$ to E, equipped with the operator norm. Then in view of (1.1), we have

\begin{equation*} T=\sum^\infty_{n=1}\alpha_n\Phi_{\lambda_n}\otimes\,e_n \ \ \mbox{in} \ \ {\cal L}(B(\Sigma),E), \end{equation*}

where $(\alpha_n\Phi_{\lambda_n}\otimes\,e_n)(u)=\alpha_n\Phi_{\lambda_n}(u)\,e_n$ for $u\in B(\Sigma)$.

It is known that the space ${\cal N}(B(\Sigma),E)$ of all nuclear operators between $B(\Sigma)$ and E (equipped with the nuclear norm $\|\cdot\|_{nuc}$) is a Banach space (see [Reference Pietsch21, 3.1, Proposition, p. 51]).

Due to Diestel [Reference Diestel5, Theorem 9] a bounded linear operator $T:B(\Sigma)\rightarrow E$ is nuclear if and only if mT has an approximate Radon-Nikodym derivative with respect to its variation.

According to [Reference Nowak18, Definition 2.1] we have

Definition 1.2. A linear operator $T:B(\Sigma)\rightarrow E$ is said to be σ-smooth if $\|T(u_n)\|_E\rightarrow 0$ whenever $(u_n)$ is a uniformly bounded sequence in $B(\Sigma)$ such that $u_n(\omega)\rightarrow 0$ for each $\omega\in\Omega$.

By $\tau(B(\Sigma),ca(\Sigma))$ we denote the natural Mackey topology on $B(\Sigma)$. Note that $(B(\Sigma),\tau(B(\Sigma),$ $ca(\Sigma)))$ is a generalized DF-space, that is, $\tau(B(\Sigma),ca(\Sigma))$ is the finest locally convex topology agreeing with itself on norm-bounded sets in $B(\Sigma)$ (see [Reference Khurana16], [Reference Nowak18], [Reference Nowak17], [Reference Graves and Ruess11]).

The following characterization of σ-smooth operators $T:B(\Sigma)\rightarrow E$ will be useful (see [Reference Nowak18, Proposition 2.2], [Reference Nowak17, Proposition 3.1]).

Proposition 1.1. For a bounded linear operator $T:B(\Sigma)\rightarrow E$, the following statements are equivalent:

  1. (i) T is σ-smooth.

  2. (ii) T is $(\tau(B(\Sigma),ca(\Sigma)),\|\cdot\|_E)$-continuous.

  3. (iii) $m_T:\Sigma\rightarrow E$ is a countably additive measure.

In this paper, we show that a linear operator $T:B(\Sigma)\rightarrow E$ is Bochner representable if and only if T is a nuclear σ-smooth operator and if and only if T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E (see Corollary 2.5 below). We derive a formula for the trace of a Bochner representable operator $T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function $f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space (see Corollary 3.1 below).

2. Nuclearity of Bochner representable operators on $B(\Sigma)$

We will need the following result (see [Reference Khurana16, Theorem 3], [Reference Nowak20, Proposition 13 and Corollary 14]).

Proposition 2.1. For a subset ${\cal M}$ of $ca(\Sigma)$, the following statements are equivalent:

  1. (i) The family $\{\Phi_\lambda:\lambda\in{\cal M}\}$ is $\tau(B(\Sigma),ca(\Sigma))$-equicontinuous.

  2. (ii) $\sup_{\lambda\in{\cal M}}\|\lambda\| \lt \infty$ and ${\cal M}$ is uniformly countably additive.

Grothendieck carried over the concept of nuclear operators to locally convex spaces [Reference Grothendieck12], [Reference Grothendieck13] (see also [Reference Yosida28, p. 289–293], [Reference Jarchow15, pp. 376–378], [Reference Schaefer24, Chap. 3, § 7], [Reference Trèves27, § 47]). Following [Reference Schaefer24, Chap. 3, § 7], [Reference Trèves27, § 47] and using Proposition 2.1 we have the following definition.

Definition 2.1. A linear operator $T:B(\Sigma)\rightarrow E$ between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and a Banach space E is said to be nuclear if there exist a bounded and uniformly countably additive sequence $(\lambda_n)$ in $ca(\Sigma)$, a bounded sequence $(e_n)$ in E and a sequence $(\alpha_n)\in\ell^1$ such that

(2.1)\begin{equation} T(u)=\sum^\infty_{n=1}\alpha_n\left(\int_\Omega u(\omega)\, d\lambda_n\right)e_n \ \ \rm{for\, all}\ \ u\in B(\Sigma). \end{equation}

Then $T:B(\Sigma)\rightarrow E$ is $(\tau(B(\Sigma),ca(\Sigma)),\|\cdot\|_E)$-compact, that is, T(V) is relatively norm compact in E for some $\tau(B(\Sigma),ca(\Sigma))$-neighbourhood V of 0 in $B(\Sigma)$ (see [Reference Schaefer24, Chap. 3, § 7, Corollary 1], [Reference Trèves27, Theorem 47.3]). Hence T is $(\tau(B(\Sigma),ca(\Sigma)),$ $\|\cdot\|_E)$-continuous.

Let us put

\begin{equation*} \|T\|_{\tau-nuc}:=\inf\left\{\sum^\infty_{n=1} |\alpha_n|\,|\lambda_n|\,(\Omega)\,\|e_n\|_E\right\}, \end{equation*}

where the infimum is taken over all sequences $(\lambda_n)$ in $ca(\Sigma)$ and $(e_n)$ in E and $(\alpha_n)\in\ell^1$ such that T admits a representation (2.1).

According to [Reference Nowak19, Theorem 2.1] and Proposition 1.1 we have the following characterization of nuclear σ-smooth operators $T:B(\Sigma)\rightarrow E$.

Theorem 2.2. Assume that $T:B(\Sigma)\rightarrow E$ is a σ-smooth operator. Then the following statements are equivalent:

  1. (i) T is a nuclear operator between the Banach spaces $B(\Sigma)$ and E.

  2. (ii) $|m_T|(\Omega) \lt \infty$ and mT has a $|m_T|$-Bochner integrable derivative, that is, there exists a function $f\in L^1(|m_T|,E)$ so that $m_T(A)=\int_Af(\omega)\,d|m_T|$ for all $A\in\Sigma$.

  3. (iii) $|m_T|(\Omega) \lt \infty$ and T is a $|m_T|$-Bochner integrable kernel, that is, there exists a function $f\in L^1(|m_T|,E)$ so that $T(u)=\int_{\Omega}u(\omega)f(\omega)\,d|m_T|$ for all $u\in B(\Sigma)$.

  4. (iv) T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E.

In this case, $\|T\|_{nuc}=\|T\|_{\tau-nuc}=|m_T|(\Omega)$.

Making us of [Reference Dinculeanu8, Sect.2, F, Theorem 30, p. 26] we have the following result.

Lemma 2.3. For $\mu\in ca(\Sigma)^+$ and $f\in L^1(\mu,E)$, let us put

\begin{equation*} \lambda(A):=\int_A\|f(\omega)\|_E\,d\mu,\quad\mbox{for all}\ \ A\in\Sigma, \end{equation*}

and

\begin{equation*} h_f(\omega):=f(\omega)/\|f(\omega)\|_E\ \ \mbox{if}\ \ f(\omega)\neq0\ \ \mbox{and}\ \ h_f(\omega):=0\ \ \mbox{if}\ \ f(\omega)=0. \end{equation*}

Then $h_f\in L^1(\lambda, E)$ and

\begin{equation*} \int_{\Omega}u(\omega)h_f(\omega)\,d\lambda=\int_{\Omega}u(\omega)f(\omega)\,d\mu,\quad \mbox{for all}\ \ u\in B(\Sigma). \end{equation*}

In particular, $\int_Ah_f(\omega)\,d\lambda=\int_Af(\omega)\,d\mu$ for all $A\in\Sigma$.

Theorem 2.4. Assume that $T:B(\Sigma)\rightarrow E$ is a Bochner representable operator. Then T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E.

Proof. There exists a measure $\mu\in ca(\Sigma)^+$ and a function $f\in L^1(\mu,E)$ so that

\begin{equation*} T(u)=\int_\Omega u(\omega)f(\omega)\,d\mu,\quad \mbox{for all}\ \ u\in B(\Sigma). \end{equation*}

Hence

\begin{equation*} m_T(A)=\int_A f(\omega)\,d\mu\ \ \mbox{and}\ \ |m_T|(A)=\int_A\|f(\omega)\|_E\,d\mu,\quad \mbox{for all}\ \ A\in\Sigma, \end{equation*}

where mT is a countably additive measure (see [Reference Diestel and Uhl7, Theorem 4, p. 46]), and in view of Proposition 1.1 T is σ-smooth. Hence using Lemma 2.3 we get

\begin{equation*} m_T(A)=\int_Af(\omega)\,d\mu=\int_Ah_f(\omega)\,d|m_T|,\quad \mbox{for all}\ \ A\in\Sigma, \end{equation*}

where $h_f\in L^1(|m_T|,E)$. By Theorem 2.2 we derive that T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E.

In view of Theorem 2.4 and Theorem 2.2 we can obtain the following characterization of Bochner representable operators $T:B(\Sigma)\rightarrow E$.

Theorem 2.5. For a linear operator $T:B(\Sigma)\rightarrow E$, the following statements are equivalent:

  1. (i) T is a Bochner representable operator.

  2. (ii) T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E.

  3. (iii) T is a σ-smooth nuclear operator between the Banach spaces $B(\Sigma)$ and E.

As a consequence of Theorem 2.4 and Theorem 2.2, we get

Corollary 2.6. Assume that $T:B(\Sigma)\rightarrow E$ is a Bochner representable operator. Then the mapping

\begin{equation*} T^*:E'\ni e'\mapsto e'\circ m_T\in ca(\Sigma) \end{equation*}

is a nuclear operator and $\|T^*\|_{nuc}=\|T\|_{nuc}=|m_T|(\Omega)$.

Proof. Let ɛ > 0 be given. In view of Theorem 2.4 and Theorem 2.2 there exist a bounded and uniformly countably additive sequence $(\lambda_n)$ in $ca(\Sigma)$, a bounded sequence $(e_n)$ in E and $(\alpha_n)\in\ell^1$ so that

\begin{equation*} T(u)=\sum^\infty_{n=1}\alpha_n \Phi_{\lambda_n}(u)\,e_n,\quad \mbox{for all} \ \ u\in B(\Sigma) \end{equation*}

and

(2.5)\begin{equation} \sum^\infty_{n=1}|\alpha_n|\;|\lambda_n|(\Omega)\;\|e_n\|_E\leq |m_T|(\Omega)+\varepsilon. \end{equation}

One can show that for each $e'\in E'$, we have

\begin{equation*} e'\circ T=\sum^\infty_{n=1}\alpha_n\,e'(e_n)\Phi_{\lambda_n} \ \ \mbox{in}\ \ B(\Sigma)'. \end{equation*}

Moreover, for each $e'\in E'$, we have $e'\circ m_T\in ca(\Sigma)$ and

\begin{equation*} (e'\circ T)(u)=\int_\Omega u(\omega)\,d(e'\circ m_T) ,\quad \mbox{for all}\ \ u\in B(\Sigma). \end{equation*}

Let $i:E\rightarrow E^{\prime\prime}$ stand for the canonical isometry, that is, $i(e)(e')=e'(e)$ for $e\in E$, $e'\in E'$ and $\|i(e)\|_{E^{\prime\prime}}=\|e\|_E$. Hence for each $e'\in E'$, we get

\begin{equation*} T^*(e') = e'\circ m_T =\Phi^{-1}(e'\circ T)= \sum^\infty_{n=1}\alpha_n\,i(e_n)(e')\,\lambda_n. \end{equation*}

This means that $T^*$ is a nuclear operator and by (2.5) we get $\|T^*\|_{nuc}\le|m_T|(\Omega)$.

Now, we shall show that

\begin{equation*} |m_T|(\Omega)\le\|T^*\|_{nuc}. \end{equation*}

Let ɛ > 0 be given. Since $T^*$ is a nuclear operator, there exist a bounded sequence $(e^{\prime\prime}_n)$ in E ʹʹ, a bounded sequence $(\lambda_n)$ in $ca(\Sigma)$ and $(\alpha_n)\in\ell^1$ so that

\begin{equation*} T^*(e')=\sum_{n=1}^\infty\alpha_n\,e^{\prime\prime}_n(e')\,\lambda_n\ \ \mbox{for}\ \ e'\in E' \end{equation*}

and

(2.6)\begin{equation} \sum_{n=1}^\infty|\alpha_n|\|e^{\prime\prime}_n\|_{E^{\prime\prime}}|\lambda_n|(\Omega)\le\|T^*\|_{nuc}+\varepsilon. \end{equation}

Then for $A\in\Sigma$, we obtain

\begin{equation*} (e'\circ m_T)(A)=T^*(e')(A)=\sum_{n=1}^\infty\alpha_n\,e^{\prime\prime}_n(e')\,\lambda_n(A). \end{equation*}

Moreover, by the Hahn-Banach theorem for every $A\in\Sigma$, there exists $e'_A\in E'$ with $\|e'_A\|_{E'}=1$ such that $\|m_T(A)\|_E=|(e'_A\circ m_T)(A)|$. Hence, if Π is a finite Σ-partition of Ω, then using (2.6) we have

\begin{equation*} \begin{array}{l} \displaystyle\sum_{A\in\Pi}\|m_T(A)\|_E=\sum_{A\in\Pi}|(e'_A\circ m_T)(A)|=\sum_{A\in\Pi}\left|\sum_{n=1}^\infty\alpha_n\,e^{\prime\prime}_n(e'_A)\,\lambda_n(A)\right|\\[6mm] \displaystyle\leq\sum_{A\in\Pi}\left(\sum^\infty_{n=1}|\alpha_n|\,|e^{\prime\prime}_n(e'_A)|\,|\lambda_n(A)|\right)\leq\sum^\infty_{n=1}\left(|\alpha_n|\|e^{\prime\prime}_n\|_{E^{\prime\prime}}\sum_{A\in\Pi}|\lambda_n(A)|\right)\\[6mm] \displaystyle\leq\sum^\infty_{n=1}|\alpha_n|\|e^{\prime\prime}_n\|_{E^{\prime\prime}}|\lambda_n|(\Omega)\le\|T^*\|_{nuc}+\varepsilon. \end{array} \end{equation*}

Since ɛ > 0 is arbitrary, we get $|m_T|(\Omega)\le\|T^*\|_{nuc}$ and finally $\|T^*\|_{nuc}=|m_T|(\Omega)=\|T\|_{nuc}$.

3. Traces of Bochner representable operators

Formulas for the traces of kernel operators on Banach function spaces (in particular, $L^p(\mu)$-spaces) have been the object of much study (see [Reference Grothendieck14], [Reference Brislawn2], [Reference Delgado4], [Reference Gohberg, Goldberg and Krupnik10], [Reference Pietsch22]).

Grothendieck [Reference Grothendieck13, Chap. I, p. 165] showed that the notion of ‘trace’ can be defined for nuclear operators in Banach spaces with the approximation property (see [Reference Pietsch22, 4.6.2, Lemma, pp. 210–211]).

Recall that a Banach space $(X,\|\cdot\|_X)$ has the approximation property if for every compact subset K of X and every ɛ > 0 there exists a bounded finite rank operator $S:X\rightarrow X$ such that $\|x-S(x)\|_X\leq\varepsilon$ for every $x\in K$ (see [Reference Ryan23, Chap. 4, p. 72], [Reference Diestel and Uhl7, Definition 1, p. 238]).

Note that the Banach space $B(\Sigma)$ has the approximation property. Assume first that $B(\Sigma)$ is the Banach lattice of all bounded Σ-measurable real functions on Ω. Since $(B(\Sigma),\|\cdot\|_\infty)$ is an AM-space with the unit $\mathbb{1}_\Omega$, due to the Kakutani-Bohnenblust-M. and S. Krein theorem (see [Reference Aliprantis and Burkinshaw1, Theorem 3.40]) $B(\Sigma)$ is lattice isometric to some C(K)-space for a unique (up to homeomorphism) compact Hausdorff space K in such a way that $\mathbb{1}_\Omega$ is identified with $\mathbb{1}_K$. This follows that $B(\Sigma)$ has the approximation property because C(K) has the approximation property (see [Reference Ryan23, Example 4.2]). For the Banach space $B(\Sigma)$ of complex-valued functions on Ω, one has to consider real and imaginary parts separate.

Assume that $T:B(\Sigma)\rightarrow B(\Sigma)$ is a nuclear operator, that is, there exist a bounded sequence $(\lambda_n)$ in $ba(\Sigma)$, a bounded sequence $(w_n)$ in $B(\Sigma)$ and $(\alpha_n)\in\ell^1$ so that

(3.1)\begin{equation} T=\sum^\infty_{n=1}\alpha_n\Phi_{\lambda_n}\otimes w_n \ \ \mbox{in} \ \ {\cal L}(B(\Sigma),B(\Sigma)). \end{equation}

Then the trace of T is given by

\begin{equation*} {\rm tr}\,T:=\sum^\infty_{n=1}\alpha_n\Phi_{\lambda_n}(w_n)=\sum^\infty_{n=1}\alpha_n\int_\Omega w_n(\omega)\,d\lambda_n, \end{equation*}

and it does not depend on the special choice of the nuclear representation (3.1) of T (see [Reference Gohberg, Goldberg and Krupnik10, Chap. 5, Theorem 1.2], [Reference Pietsch22, Lemma, pp. 210–211]).

From now on we assume that $(\Omega,{\cal T})$ is a compact Hausdorff space and ${\cal B} o$ denotes the σ-algebra of Borel sets in Ω. Then $C(\Omega)\subset B({\cal B} o)$.

Assume that a measure $\mu\in ca^+({\cal B} o)$ is strictly positive, that is, for all $U\in{\cal T}$ with $U\neq \emptyset$, $\mu(U) \gt 0$. Then $L^1(\mu,C(\Omega))\subset L^1(\mu,B({\cal B} o))$.

Corollary 3.1. Assume that $T:B({\cal B} o)\rightarrow B({\cal B} o)$ is a Bochner representable operator such that

\begin{equation*} T(u)=\int_\Omega u(\omega)\,f(\omega)\,d\mu,\quad \mbox{for all} \ u\in B({\cal B} o), \end{equation*}

where $f\in L^1(\mu, C(\Omega))$. Then T has a well-defined trace

\begin{equation*} {\rm tr}\,T=\int_\Omega f(\omega)(\omega)\,d\mu. \end{equation*}

Proof. Let $L^1(\mu)\,\hat{\otimes}\,C(\Omega)$ denote the projective tensor product of $L^1(\mu)$ and $C(\Omega)$, equipped with the completed norm π (see [Reference Diestel and Uhl7, p. 227], [Reference Ryan23, p. 17]). Note that for $z\in L^1(\mu)\,\hat{\otimes}\, C(\Omega)$, we have

\begin{equation*} \pi(z)=\inf\left\{\sum^\infty_{n=1}|\alpha_n|\,\|v_n\|_1\|w_n\|_\infty\right\}, \end{equation*}

where the infimum is taken over all sequences $(v_n)$ in $L^1(\mu)$ and $(w_n)$ in $C(\Omega)$ with $\lim_n\|v_n\|_1=0=\lim_n\|w_n\|_\infty$ and $(\alpha_n)\in\ell^1$ such that $z=\sum^\infty_{n=1}\alpha_n\,v_n\otimes w_n$ in π-norm (see [Reference Ryan23, Proposition 2.8, pp. 21–22]).

It is known that $L^1(\mu)\,\hat{\otimes}\, C(\Omega)$ is isometrically isomorphic to the Banach space $(L^1(\mu,C(\Omega)),\|\cdot\|_1)$ by the isometry J, defined by:

\begin{equation*} J(v\otimes w):=v\, (\cdot)\, w \ \ \mbox{for} \ v\in L^1(\mu), \ w\in C(\Omega) \end{equation*}

(see [Reference Diestel and Uhl7, Example 10, p. 228], [Reference Ryan23, Example 2.19, p. 29]). Then there exist sequences $(v_n)$ in $L^1(\mu)$ and $(w_n)$ in $C(\Omega)$ with $\lim_n\|v_n\|_1=0=\lim_n\|w_n\|_\infty$ and $(\alpha_n)\in\ell^1$ such that

\begin{equation*} J^{-1}(f)=\sum^\infty_{n=1}\alpha_n\,v_n\otimes w_n \ \ \mbox{in} \ \big(L^1(\mu)\,\hat{\otimes} \,C(\Omega), \pi\big). \end{equation*}

Thus it follows that

\begin{equation*} f=J\left(\sum^\infty_{n=1}\alpha_n v_n\otimes w_n\right)=\sum^\infty_{n=1} \alpha_n v_n(\cdot)\, w_n \ \ \mbox{in} \ \ L^1(\mu,C(\Omega)), \end{equation*}

and hence

\begin{equation*} T(u)=\sum^\infty_{n=1}\alpha_n\left(\int_\Omega u(\omega)\,v_n(\omega)\,d\mu\right) w_n,\quad \mbox{for all} \ \ u\in B(\Sigma). \end{equation*}

For $n\in\mathbb{N}$, let

\begin{equation*} \lambda_n(A):=\int_A v_n(\omega)\,d\mu,\quad \mbox{for all} \ \ A\in\Sigma. \end{equation*}

Note that $\lambda_n\in ca(\Sigma)$ and $|\lambda_n|(\Omega)=\|v_n\|_1$ and hence $\lim\lambda_n(A)=0$ for all $A\in\Sigma$. By the Nikodym convergence theorem (see [Reference Drewnowski9, Theorem 8.6]), the family $\{\lambda_n:n\in\mathbb{N}\}$ is uniformly countably additive.

Since $\Phi_{\lambda_n}(u)=\int_\Omega u(\omega)\,d\lambda_n=\int_\Omega u(\omega)\,v_n(\omega)\,d\mu$ for all $u\in B(\Sigma)$ (see [Reference Conway3, Theorem 8C, p. 380]), we get

\begin{equation*} T(u)=\sum^\infty_{n=1}\alpha_n\Phi_{\lambda_n}(u)w_n,\quad \mbox{for all} \ \ u\in B(\Sigma), \end{equation*}

that is,

\begin{equation*} T=\sum_{n=1}^\infty\alpha_n\Phi_{\lambda_n}\otimes w_n\ \ \mbox{in}\ \ {\cal L}(B(\Sigma),B(\Sigma)). \end{equation*}

Hence

\begin{equation*} {\rm tr}\,T=\sum_{n=1}^\infty\alpha_n\Phi_{\lambda_n}(w_n)=\sum_{n=1}^\infty\alpha_n\int_\Omega w_n(\omega)\,v_n(\omega)\,d\mu. \end{equation*}

For $n\in\mathbb{N}$, let $f_n=\sum_{i=1}^n\alpha_i\,v_i(\cdot)\,w_i$. Hence $\int_\Omega\|f(\omega)-f_n(\omega)\|_\infty\,d\mu\rightarrow 0$. Thus we get,

\begin{equation*} \begin{array}{l} \displaystyle \left|\int_\Omega f(\omega)(\omega)\,d\mu-\sum^n_{i=1}\alpha_i\int_\Omega v_i(\omega)\, w_i(\omega)\,d\mu\right|\\[5mm] \displaystyle \leq \int_\Omega\left|\left(f(\omega)(\omega)-\sum^n_{i=1}\alpha_i v_i(\omega)\,w_i(\omega)\right) \right|d\mu \leq \int_\Omega\|f(\omega)-f_n(\omega)\|_\infty \,d\mu. \end{array} \end{equation*}

Let $g\in L^1(\mu,C(\Omega))$ be another function representing T, that is,

\begin{equation*} T(u)(t)=\int_\Omega u(\omega)\,f(\omega)(t)\,d\mu(\omega)=\int_\Omega u(\omega)\,g(\omega)(t)\,d\mu(\omega)\ \ \mbox{for}\ \ u\in B({\cal B} o). \end{equation*}

Denote $h(\omega)(t):=f(\omega)(t)-g(\omega)(t)$ for $\omega,t\in\Omega$. Then for every $A\in{\cal B} o$ and $u=\mathbb{1}_A$ we obtain

\begin{equation*} \int_A h(\omega)(t)\,d\mu(\omega)=0 \ \ \mbox{for all}\ \ t\in\Omega. \end{equation*}

Hence for every $t\in\Omega$, $h(\cdot)(t)=0$ µ-a.e and it follows that

(3.2)\begin{equation} \int_\Omega\left(\int_\Omega |h(\omega)(t)|\,d\mu(\omega)\right)\,d\mu(t)=0. \end{equation}

We shall show that

\begin{equation*} \int_\Omega h(\omega)(\omega)\,d\mu(\omega)=0. \end{equation*}

For indirect proof suppose that $\left|\int_\Omega h(\omega)(\omega)\,d\mu(\omega)\right| \gt 0$. Then there exists $A\in{\cal B} o$, $\mu(A)\neq 0$ such that $h(\omega)(\omega) \gt 0$ or $h(\omega)(\omega) \lt 0 $ for $\omega\in A$. Without loss of generality, let $h(\omega)(\omega) \gt 0$ for $\omega\in A$. Since for $\omega\in\Omega$ we have $h(\omega)\in C(\Omega)$, then there exists a neighbourhood Hω of $\omega\in A$ such that

\begin{equation*} h(\omega)(t) \gt 0\ \ \mbox{for every}\ \ t\in H_\omega. \end{equation*}

Since µ is strictly positive, then for every $\omega\in A$, $\mu(H_\omega) \gt 0$ and hence

\begin{equation*} \int_{H_\omega}h(\omega)(t)\,d\mu(t) \gt 0. \end{equation*}

Let $\omega_0\in A$ be given. Then, we have

\begin{equation*} \int_{\Omega}|h(\omega_0)(t)|\,d\mu(t)\ge\int_{\bigcup H_\omega}|h(\omega_0)(t)|\,d\mu(t)\ge\int_{H_{\omega_0}}|h(\omega_0)(t)|\,d\mu(t) \gt 0. \end{equation*}

Since ω 0 is arbitrary, it follows that

\begin{equation*} \int_\Omega\left(\int_\Omega |h(\omega)(t)|\,d\mu(t)\right)\,d\mu(\omega) \gt 0 \end{equation*}

and, in view of Hille’s theorem (see [Reference Dinculeanu8, § 1, Theorem 36, p. 16]), this is in contradiction with (3.2). Hence we finally get

\begin{equation*} \int_\Omega h(\omega)(\omega)\,d\mu(\omega)=0. \end{equation*}

Thus this follows that the trace of T is well defined and ${\rm tr}\,T=\int_\Omega f(\omega)(\omega)\,d\mu$.

Grothendieck [Reference Grothendieck14] showed that if Ω is a compact Hausdorff space with a positive Borel measure µ on Ω and $k(\cdot,\cdot)\in C(\Omega\times\Omega)$, then the kernel operator $T_k:C(\Omega)\rightarrow C(\Omega)$ defined by:

\begin{equation*} T_k(u):=\int_\Omega u(\omega)\,k(\cdot,\omega)\,d\mu \ \ \mbox{for} \ \ u\in C(\Omega), \end{equation*}

is nuclear and has a well-defined trace ${\rm tr}\,T_k=\int_\Omega k(\omega,\omega)\,d\mu$ (see [Reference Grothendieck14], [Reference Pietsch22, 6.6.2, Theorem, p. 274]).

Now, we can extend this formula for the trace of kernel operators $T_k:B({\cal B} o)\rightarrow B({\cal B} o)$.

Let $k(\cdot,\cdot)\in C(\Omega\times\Omega)$. Hence for every $\omega\in\Omega$, $k(\cdot,\omega)\in C(\Omega)$. Let $C(\Omega, C(\Omega))$ denote the Banach space of all continuous functions $f:\Omega\rightarrow C(\Omega)$, equipped with the uniform norm $\|\cdot\|_\infty$.

Assume that $\mu\in ca({\cal B} o)^+$. Let ${\cal L}^\infty(\mu, C(\Omega))$ denote the space of all µ-measurable functions $g:\Omega\rightarrow C(\Omega)$ such that $\mu-{\rm ess }\sup\|g(\omega)\|_\infty \lt \infty$. In view of the Pettis measurability theorem (see [Reference Diestel and Uhl7, Theorem 2, p. 42]), we have

(3.3)\begin{equation} C(\Omega, C(\Omega))\subset{\cal L}^\infty(\mu, C(\Omega)), \end{equation}

and the space ${\cal L}^\infty(\mu, C(\Omega))$ can be embedded in the space $L^1(\mu, C(\Omega))$ such that with each function from ${\cal L}^\infty(\mu, C(\Omega))$ is associated its µ-equivalence class in $L^1(\mu, C(\Omega))$.

It is well known (see [Reference Pietsch22, 6.1.4, p. 243]) that the function:

\begin{equation*} f:\Omega\ni\omega\mapsto k(\cdot,\omega)\in C(\Omega), \end{equation*}

is bounded and continuous. Then in view of (3.3), $f\in{\cal L}^\infty(\mu, C(\Omega))$. Hence its µ-equivalence class belongs to $L^1(\mu,C(\Omega))$. Thus it follows that one can define the kernel operator $T_k: B({\cal B} o)\rightarrow B({\cal B} o)$ by

\begin{equation*} T_k(u):=\int_\Omega u(\omega)\,k(\cdot,\omega)\,d\mu,\quad \mbox{for all}\ \ u\in B({\cal B} o). \end{equation*}

For $t\in\Omega$, let $\Phi_t(u)=u(t)$ for all $u\in B({\cal B} o)$. Then $\Phi_t\in C(\Omega)'$ and using Hille’s theorem, for all $u\in B({\cal B} o)$, $t\in\Omega$, we get

\begin{equation*} T_k(u)(t)=\int_\Omega u(\omega)\,\Phi_t(k(\cdot,\omega))\,d\mu=\int_\Omega u(\omega)\,k(t,\omega)\,d\mu. \end{equation*}

As a consequence of Theorem 2.2 and Corollary 3.1, we get

Corollary 3.2. The kernel operator $T_k:B({\cal B} o)\rightarrow B({\cal B} o)$ is nuclear σ-smooth and

\begin{equation*} {\rm tr}\,T_k=\int_\Omega k(\omega,\omega)\,d\mu. \end{equation*}

References

Aliprantis, C. D., and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, Math. Surveys and Monographs, Vol. 105 (AMS, Providence, RI, 2003).CrossRefGoogle Scholar
Brislawn, C., Kernels of trace class operators, Proc. Amer. Math. Soc. 104(4): (1988), 11811190.CrossRefGoogle Scholar
Conway, J. B., A Course in Functional Analysis, 2nd ed., (Springer-Verlag, New York, 1990).Google Scholar
Delgado, J., A trace formula for nuclear operators on Lp, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications, Vol. 205 (Birkhäuser, Basel, 2009), .Google Scholar
Diestel, J., The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 16111620.Google Scholar
Diestel, J., Applications of weak compactness and bases to vector measures and vectorial integration, Rev. Roumaine Math. Pures Appl. 18 (1973), 211224.Google Scholar
Diestel, J., and Uhl, J. J., Vector Measures, Math. Surveys, Vol. 15 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
Dinculeanu, N., Vector Integration and Stochastic Integration in Banach Spaces, (Wiley-Interscience, New York, 2000).CrossRefGoogle Scholar
Drewnowski, L., Topological rings of sets, continuous set functions, integration, III, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20 (1972), 439445.Google Scholar
Gohberg, I., Goldberg, S. and Krupnik, N., Traces and Determinants of Linear Operators (Springer, Basel, 2000).CrossRefGoogle Scholar
Graves, W. H. and Ruess, W., Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, Contemp. Math. 2 (1980), 189203.CrossRefGoogle Scholar
Grothendieck, A., Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57123.Google Scholar
Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Soc. 16 (1955), .Google Scholar
Grothendieck, A., La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319384.CrossRefGoogle Scholar
Jarchow, H., Locally Convex Spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
Khurana, S. S., A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167179.Google Scholar
Nowak, M., Vector measures and Mackey topologies, Indag. Math. 23(1–2) (2012), 113122.CrossRefGoogle Scholar
Nowak, M., Mackey topologies and compactness in spaces of vector measures, Funct. Approx. 50(1) (2014), 191198.Google Scholar
Nowak, M., Nuclear operators and applications to kernel operators, Math. Nachr. 296(5) (2023), 21092120.CrossRefGoogle Scholar
Nowak, M., Topological properties of complex lattice of bounded measurable functions, J. Function Spaces and Appl. 2013 (2013), .Google Scholar
Pietsch, A., Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und Ihrer Grenzebiete, Vol. 66 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
Pietsch, A., Eigenvalues and s-Numbers (Akadem. Verlagsges. Geest & Portig, Leipzig, 1987).Google Scholar
Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).CrossRefGoogle Scholar
Schaefer, H. H., Topological Vector Spaces (Springer-Verlag, New York, Heidelberg, Berlin, 1971).CrossRefGoogle Scholar
Sofi, M. A., Vector measures and nuclear operators, Illin. J. Math. 49(2): (2005), 369383.Google Scholar
Tong, A. E., Nuclear mappings on C(X), Math. Ann. 194 (1971), 213224.CrossRefGoogle Scholar
Trèves, F., Topological Vector Spaces, Distributions and Kernels, (Dover Publications, New York, 1967).Google Scholar
Yosida, K., Functional Analysis, 4th Ed., (Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar