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Góra, Poland (M.Nowak@wmie.uz.zgora.pl)
2

Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich
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Abstract Let Σ be a σ-algebra of subsets of a set Ω and B(Σ) be the Banach space of all bounded
Σ-measurable scalar functions on Ω. Let τ(B(Σ), ca(Σ)) denote the natural Mackey topology on B(Σ).
It is shown that a linear operator T from B(Σ) to a Banach space E is Bochner representable if and
only if T is a nuclear operator between the locally convex space (B(Σ), τ(B(Σ), ca(Σ))) and the Banach
space E. We derive a formula for the trace of a Bochner representable operator T : B(Bo) → B(Bo)
generated by a function f ∈ L1(Bo, C(Ω)), where Ω is a compact Hausdorff space.
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1. Introduction and preliminaries

Let Σ be a σ-algebra of subsets of a set Ω and B(Σ) be the Banach space of all bounded
Σ-measurable scalar functions on Ω, equipped with the uniform norm ‖ · ‖∞. We assume
that the field of scalars is either the set of real numbers or the set of complex numbers.
Let ba(Σ) denote the Banach space of all bounded additive scalar-valued measures λ

on Σ, equipped the total variation norm ‖λ‖ := |λ|(Ω). The Banach dual B(Σ)′ of B(Σ)
can be identified with ba(Σ) throughout the mapping

Φ : ba(Σ) 3 λ 7→ Φλ ∈ B(Σ)′,

where Φλ(u) :=
∫
Ω
u(ω) dλ for u ∈ B(Σ) and ‖Φλ‖ = ‖λ‖. Let ca(Σ) denote the closed

subspace of ba(Σ) consisting of all countably additive members of ba(Σ).
From now on we assume that (E, ‖ · ‖E) is a Banach space and (E′, ‖ · ‖E′) denotes its

dual. Assume that m : Σ → E is a finitely additive measure. By |m|(A) (resp. ‖m‖(A))
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On traces of Bochner representable operators on the space 225

we denote the variation (resp. semivariation) of m on A (see [7, Definition 4, p. 2]). Then
‖m‖(A) ≤ |m|(A) for A ∈ Σ.
If T : B(Σ) → E is a bounded linear operator, let

mT (A) = T (1A) for A ∈ Σ.

Then, T (u) =
∫
Ω
u(ω)dmT and ‖T‖ = ‖mT ‖(Ω) (see [7, Theorem 13, p. 6]).

Different classes of linear operators T : B(Σ) → E (weakly compact, absolutely sum-
ming, nuclear, integral, σ-smooth) have been studied in numerous papers (see [5], [6], [7],
[11], [18], [17]).
For µ ∈ ca(Σ)+, let L1(µ,E) denote the Banach space of µ-equivalence classes of

all E -valued Bochner µ-integrable functions f on Ω, equipped with norm ‖f‖1 :=∫
Ω
‖f(ω)‖E dµ.
Following [26] we can consider a class of linear operators on B(Σ).

Definition 1.1. We say that a linear operator T : B(Σ) → E is Bochner representable
if there exist a measure µ ∈ ca(Σ)+ and a function f ∈ L1(µ,E) so that

T (u) =

∫
Ω

u(ω) f(ω) dµ, for all u ∈ B(Σ).

The concept of nuclear operators between Banach spaces in due to Grothendieck [12],
[13] (see also [28, p. 279], [21, Chap. 3], [22], [7, Chap. 6], [9, Chap. 5], [25], [23]).
Recall (see [28, p. 279], [25]) that a linear operator T : B(Σ) → E between Banach

spaces B(Σ) and E is said to be nuclear if there exist a bounded sequence (λn) in ba(Σ),
a bounded sequence (en) in E and a sequence (αn) ∈ `1 so that

T (u) =
∞∑

n=1

αnΦλn(u) en, for all u ∈ B(Σ). (1.1)

Then the nuclear norm of T is defined by

‖T‖nuc := inf

{ ∞∑
n=1

|αn| |λn| (Ω) ‖en‖E

}
,

where the infimum is taken over all sequences (λn) in ba(Σ) and (en) in E and (αn) ∈ `1

such that T admits a representation (1.1).
Let L(B(Σ), E) denote the Banach space of all bounded linear operators from B(Σ)

to E, equipped with the operator norm. Then in view of (1.1), we have

T =

∞∑
n=1

αnΦλn ⊗ en in L(B(Σ), E),

where (αnΦλn ⊗ en)(u) = αnΦλn(u) en for u ∈ B(Σ).
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It is known that the space N (B(Σ), E) of all nuclear operators between B(Σ) and E
(equipped with the nuclear norm ‖ · ‖nuc) is a Banach space (see [21, 3.1, Proposition,
p. 51]).
Due to Diestel [5, Theorem 9] a bounded linear operator T : B(Σ) → E is nuclear if and

only if mT has an approximate Radon-Nikodym derivative with respect to its variation.
According to [18, Definition 2.1] we have

Definition 1.2. A linear operator T : B(Σ) → E is said to be σ-smooth if
‖T (un)‖E → 0 whenever (un) is a uniformly bounded sequence in B(Σ) such that
un(ω) → 0 for each ω ∈ Ω.

By τ(B(Σ), ca(Σ)) we denote the natural Mackey topology on B(Σ). Note that
(B(Σ), τ(B(Σ), ca(Σ))) is a generalized DF-space, that is, τ(B(Σ), ca(Σ)) is the finest
locally convex topology agreeing with itself on norm-bounded sets in B(Σ) (see [16], [18],
[17], [11]).
The following characterization of σ-smooth operators T : B(Σ) → E will be useful (see

[18, Proposition 2.2], [17, Proposition 3.1]).

Proposition 1.1. For a bounded linear operator T : B(Σ) → E, the following
statements are equivalent:

(i) T is σ-smooth.
(ii) T is (τ(B(Σ), ca(Σ)), ‖ · ‖E)-continuous.
(iii) mT : Σ → E is a countably additive measure.

In this paper, we show that a linear operator T : B(Σ) → E is Bochner representable
if and only if T is a nuclear σ-smooth operator and if and only if T is a nuclear oper-
ator between the locally convex space (B(Σ), τ(B(Σ), ca(Σ))) and the Banach space E
(see Corollary 2.5 below). We derive a formula for the trace of a Bochner representable
operator T : B(Bo) → B(Bo) generated by a function f ∈ L1(Bo, C(Ω)), where Ω is a
compact Hausdorff space (see Corollary 3.1 below).

2. Nuclearity of Bochner representable operators on B(Σ)

We will need the following result (see [16, Theorem 3], [20, Proposition 13 and
Corollary 14]).

Proposition 2.1. For a subset M of ca(Σ), the following statements are equivalent:

(i) The family {Φλ : λ ∈ M} is τ(B(Σ), ca(Σ))-equicontinuous.
(ii) supλ∈M ‖λ‖ < ∞ and M is uniformly countably additive.

Grothendieck carried over the concept of nuclear operators to locally convex spaces [12],
[13] (see also [28, p. 289–293], [15, pp. 376–378], [24, Chap. 3, § 7], [27, § 47]). Following
[24, Chap. 3, § 7], [27, § 47] and using Proposition 2.1 we have the following definition.

Definition 2.1. A linear operator T : B(Σ) → E between the locally convex space
(B(Σ), τ(B(Σ), ca(Σ))) and a Banach space E is said to be nuclear if there exist a bounded
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and uniformly countably additive sequence (λn) in ca(Σ), a bounded sequence (en) in E
and a sequence (αn) ∈ `1 such that

T (u) =
∞∑

n=1

αn

(∫
Ω

u(ω) dλn

)
en for all u ∈ B(Σ). (2.1)

Then T : B(Σ) → E is (τ(B(Σ), ca(Σ)), ‖ · ‖E)-compact, that is, T (V ) is relatively norm
compact in E for some τ(B(Σ), ca(Σ))-neighbourhood V of 0 in B(Σ) (see [24, Chap. 3,
§ 7, Corollary 1], [27, Theorem 47.3]). Hence T is (τ(B(Σ), ca(Σ)), ‖ · ‖E)-continuous.
Let us put

‖T‖τ−nuc := inf

{ ∞∑
n=1

|αn| |λn| (Ω) ‖en‖E

}
,

where the infimum is taken over all sequences (λn) in ca(Σ) and (en) in E and (αn) ∈ `1

such that T admits a representation (2.1).
According to [19, Theorem 2.1] and Proposition 1.1 we have the following characteri-

zation of nuclear σ-smooth operators T : B(Σ) → E.

Theorem 2.2. Assume that T : B(Σ) → E is a σ-smooth operator. Then the following
statements are equivalent:

(i) T is a nuclear operator between the Banach spaces B(Σ) and E.
(ii) |mT |(Ω) < ∞ and mT has a |mT |-Bochner integrable derivative, that is, there exists

a function f ∈ L1(|mT |, E) so that mT (A) =
∫
A
f(ω) d|mT | for all A ∈ Σ.

(iii) |mT |(Ω) < ∞ and T is a |mT |-Bochner integrable kernel, that is, there exists a
function f ∈ L1(|mT |, E) so that T (u) =

∫
Ω
u(ω)f(ω) d|mT | for all u ∈ B(Σ).

(iv) T is a nuclear operator between the locally convex space (B(Σ), τ(B(Σ), ca(Σ)))
and the Banach space E.

In this case, ‖T‖nuc = ‖T‖τ−nuc = |mT |(Ω).

Making us of [8, Sect.2, F, Theorem 30, p. 26] we have the following result.

Lemma 2.3. For µ ∈ ca(Σ)+ and f ∈ L1(µ,E), let us put

λ(A) :=

∫
A

‖f(ω)‖E dµ, for all A ∈ Σ,

and

hf (ω) := f(ω)/‖f(ω)‖E if f(ω) 6= 0 and hf (ω) := 0 if f(ω) = 0.

Then hf ∈ L1(λ,E) and∫
Ω

u(ω)hf (ω) dλ =

∫
Ω

u(ω)f(ω) dµ, for all u ∈ B(Σ).

In particular,
∫
A
hf (ω) dλ =

∫
A
f(ω) dµ for all A ∈ Σ.
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Theorem 2.4. Assume that T : B(Σ) → E is a Bochner representable operator. Then
T is a nuclear operator between the locally convex space (B(Σ), τ(B(Σ), ca(Σ))) and the
Banach space E.

Proof. There exists a measure µ ∈ ca(Σ)+ and a function f ∈ L1(µ,E) so that

T (u) =

∫
Ω

u(ω)f(ω) dµ, for all u ∈ B(Σ).

Hence

mT (A) =

∫
A

f(ω) dµ and |mT |(A) =

∫
A

‖f(ω)‖E dµ, for all A ∈ Σ,

where mT is a countably additive measure (see [7, Theorem 4, p. 46]), and in view of
Proposition 1.1 T is σ-smooth. Hence using Lemma 2.3 we get

mT (A) =

∫
A

f(ω) dµ =

∫
A

hf (ω) d|mT |, for all A ∈ Σ,

where hf ∈ L1(|mT |, E). By Theorem 2.2 we derive that T is a nuclear operator between
the locally convex space (B(Σ), τ(B(Σ), ca(Σ))) and the Banach space E. �

In view of Theorem 2.4 and Theorem 2.2 we can obtain the following characterization
of Bochner representable operators T : B(Σ) → E.

Theorem 2.5. For a linear operator T : B(Σ) → E, the following statements are
equivalent:

(i) T is a Bochner representable operator.
(ii) T is a nuclear operator between the locally convex space (B(Σ), τ(B(Σ), ca(Σ)))

and the Banach space E.
(iii) T is a σ-smooth nuclear operator between the Banach spaces B(Σ) and E.

As a consequence of Theorem 2.4 and Theorem 2.2, we get

Corollary 2.6. Assume that T : B(Σ) → E is a Bochner representable operator. Then
the mapping

T ∗ : E′ 3 e′ 7→ e′ ◦mT ∈ ca(Σ)

is a nuclear operator and ‖T ∗‖nuc = ‖T‖nuc = |mT |(Ω).

Proof. Let ε> 0 be given. In view of Theorem 2.4 and Theorem 2.2 there exist a
bounded and uniformly countably additive sequence (λn) in ca(Σ), a bounded sequence
(en) in E and (αn) ∈ `1 so that
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T (u) =
∞∑

n=1

αnΦλn(u) en, for all u ∈ B(Σ)

and

∞∑
n=1

|αn| |λn|(Ω) ‖en‖E ≤ |mT |(Ω) + ε. (2.5)

One can show that for each e′ ∈ E′, we have

e′ ◦ T =
∞∑

n=1

αn e
′(en)Φλn in B(Σ)′.

Moreover, for each e′ ∈ E′, we have e′ ◦mT ∈ ca(Σ) and

(e′ ◦ T )(u) =
∫
Ω

u(ω) d(e′ ◦mT ), for all u ∈ B(Σ).

Let i : E → E′′ stand for the canonical isometry, that is, i(e)(e′) = e′(e) for e ∈ E,
e′ ∈ E′ and ‖i(e)‖E′′ = ‖e‖E . Hence for each e′ ∈ E′, we get

T ∗(e′) = e′ ◦mT = Φ−1(e′ ◦ T ) =
∞∑

n=1

αn i(en)(e
′)λn.

This means that T ∗ is a nuclear operator and by (2.5) we get ‖T ∗‖nuc ≤ |mT |(Ω).
Now, we shall show that

|mT |(Ω) ≤ ‖T ∗‖nuc.

Let ε> 0 be given. Since T ∗ is a nuclear operator, there exist a bounded sequence (e′′n)
in E

′′
, a bounded sequence (λn) in ca(Σ) and (αn) ∈ `1 so that

T ∗(e′) =
∞∑

n=1

αn e
′′
n(e

′)λn for e′ ∈ E′

and

∞∑
n=1

|αn|‖e′′n‖E′′ |λn|(Ω) ≤ ‖T ∗‖nuc + ε. (2.6)

Then for A ∈ Σ, we obtain

(e′ ◦mT )(A) = T ∗(e′)(A) =
∞∑

n=1

αn e
′′
n(e

′)λn(A).
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Moreover, by the Hahn-Banach theorem for every A ∈ Σ, there exists e′A ∈ E′ with
‖e′A‖E′ = 1 such that ‖mT (A)‖E = |(e′A ◦mT )(A)|. Hence, if Π is a finite Σ-partition of
Ω, then using (2.6) we have

∑
A∈Π

‖mT (A)‖E =
∑
A∈Π

|(e′A ◦mT )(A)| =
∑
A∈Π

∣∣∣∣∣
∞∑

n=1

αn e
′′
n(e

′
A)λn(A)

∣∣∣∣∣
≤
∑
A∈Π

( ∞∑
n=1

|αn| |e′′n(e′A)| |λn(A)|

)
≤

∞∑
n=1

(
|αn|‖e′′n‖E′′

∑
A∈Π

|λn(A)|

)

≤
∞∑

n=1

|αn|‖e′′n‖E′′ |λn|(Ω) ≤ ‖T ∗‖nuc + ε.

Since ε> 0 is arbitrary, we get |mT |(Ω) ≤ ‖T ∗‖nuc and finally ‖T ∗‖nuc = |mT |(Ω) =
‖T‖nuc. �

3. Traces of Bochner representable operators

Formulas for the traces of kernel operators on Banach function spaces (in particular,
Lp(µ)-spaces) have been the object of much study (see [14], [2], [4], [10], [22]).
Grothendieck [13, Chap. I, p. 165] showed that the notion of ‘trace’ can be defined

for nuclear operators in Banach spaces with the approximation property (see [22, 4.6.2,
Lemma, pp. 210–211]).
Recall that a Banach space (X, ‖ · ‖X) has the approximation property if for every

compact subset K of X and every ε> 0 there exists a bounded finite rank operator
S : X → X such that ‖x − S(x)‖X ≤ ε for every x ∈ K (see [23, Chap. 4, p. 72],
[7, Definition 1, p. 238]).
Note that the Banach space B(Σ) has the approximation property. Assume first that

B(Σ) is the Banach lattice of all bounded Σ-measurable real functions on Ω. Since
(B(Σ), ‖·‖∞) is an AM-space with the unit 1Ω, due to the Kakutani-Bohnenblust-M. and
S. Krein theorem (see [1, Theorem 3.40]) B(Σ) is lattice isometric to some C (K )-space
for a unique (up to homeomorphism) compact Hausdorff space K in such a way that 1Ω

is identified with 1K . This follows that B(Σ) has the approximation property because
C (K ) has the approximation property (see [23, Example 4.2]). For the Banach space
B(Σ) of complex-valued functions on Ω, one has to consider real and imaginary parts
separate.
Assume that T : B(Σ) → B(Σ) is a nuclear operator, that is, there exist a bounded

sequence (λn) in ba(Σ), a bounded sequence (wn) in B(Σ) and (αn) ∈ `1 so that

T =
∞∑

n=1

αnΦλn ⊗ wn in L(B(Σ), B(Σ)). (3.1)

Then the trace of T is given by

trT :=
∞∑

n=1

αnΦλn(wn) =
∞∑

n=1

αn

∫
Ω

wn(ω) dλn,
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and it does not depend on the special choice of the nuclear representation (3.1) of T (see
[10, Chap. 5, Theorem 1.2], [22, Lemma, pp. 210–211]).
From now on we assume that (Ω, T ) is a compact Hausdorff space and Bo denotes the

σ-algebra of Borel sets in Ω. Then C(Ω) ⊂ B(Bo).
Assume that a measure µ ∈ ca+(Bo) is strictly positive, that is, for all U ∈ T with

U 6= ∅, µ(U) > 0. Then L1(µ,C(Ω)) ⊂ L1(µ,B(Bo)).

Corollary 3.1. Assume that T : B(Bo) → B(Bo) is a Bochner representable operator
such that

T (u) =

∫
Ω

u(ω) f(ω) dµ, for all u ∈ B(Bo),

where f ∈ L1(µ,C(Ω)). Then T has a well-defined trace

trT =

∫
Ω

f(ω)(ω) dµ.

Proof. Let L1(µ) ⊗̂C(Ω) denote the projective tensor product of L1(µ) and C(Ω),
equipped with the completed norm π (see [7, p. 227], [23, p. 17]). Note that for z ∈
L1(µ) ⊗̂C(Ω), we have

π(z) = inf

{ ∞∑
n=1

|αn| ‖vn‖1‖wn‖∞

}
,

where the infimum is taken over all sequences (vn) in L1(µ) and (wn) in C(Ω) with
limn ‖vn‖1 = 0 = limn ‖wn‖∞ and (αn) ∈ `1 such that z =

∑∞
n=1 αn vn ⊗ wn in π-norm

(see [23, Proposition 2.8, pp. 21–22]).
It is known that L1(µ) ⊗̂C(Ω) is isometrically isomorphic to the Banach space

(L1(µ,C(Ω)), ‖ · ‖1) by the isometry J, defined by:

J(v ⊗ w) := v (·)w for v ∈ L1(µ), w ∈ C(Ω)

(see [7, Example 10, p. 228], [23, Example 2.19, p. 29]). Then there exist sequences (vn)
in L1(µ) and (wn) in C(Ω) with limn ‖vn‖1 = 0 = limn ‖wn‖∞ and (αn) ∈ `1 such that

J−1(f) =
∞∑

n=1

αn vn ⊗ wn in
(
L1(µ) ⊗̂C(Ω), π

)
.

Thus it follows that

f = J

( ∞∑
n=1

αnvn ⊗ wn

)
=

∞∑
n=1

αnvn(·)wn in L1(µ,C(Ω)),
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and hence

T (u) =
∞∑

n=1

αn

(∫
Ω

u(ω) vn(ω) dµ

)
wn, for all u ∈ B(Σ).

For n ∈ N, let

λn(A) :=

∫
A

vn(ω) dµ, for all A ∈ Σ.

Note that λn ∈ ca(Σ) and |λn|(Ω) = ‖vn‖1 and hence limλn(A) = 0 for all A ∈ Σ. By
the Nikodym convergence theorem (see [9, Theorem 8.6]), the family {λn : n ∈ N} is
uniformly countably additive.
Since Φλn(u) =

∫
Ω
u(ω) dλn =

∫
Ω
u(ω) vn(ω) dµ for all u ∈ B(Σ) (see [3, Theorem 8C,

p. 380]), we get

T (u) =
∞∑

n=1

αnΦλn(u)wn, for all u ∈ B(Σ),

that is,

T =
∞∑

n=1

αnΦλn ⊗ wn in L(B(Σ), B(Σ)).

Hence

trT =
∞∑

n=1

αnΦλn(wn) =
∞∑

n=1

αn

∫
Ω

wn(ω) vn(ω) dµ.

For n ∈ N, let fn =
∑n

i=1 αi vi(·)wi. Hence
∫
Ω
‖f(ω)− fn(ω)‖∞ dµ → 0. Thus we get,∣∣∣∣∣

∫
Ω

f(ω)(ω) dµ−
n∑

i=1

αi

∫
Ω

vi(ω)wi(ω) dµ

∣∣∣∣∣
≤
∫
Ω

∣∣∣∣∣
(
f(ω)(ω)−

n∑
i=1

αivi(ω)wi(ω)

)∣∣∣∣∣ dµ ≤
∫
Ω

‖f(ω)− fn(ω)‖∞ dµ.

Let g ∈ L1(µ,C(Ω)) be another function representing T, that is,

T (u)(t) =

∫
Ω

u(ω) f(ω)(t) dµ(ω) =

∫
Ω

u(ω) g(ω)(t) dµ(ω) for u ∈ B(Bo).

Denote h(ω)(t) := f(ω)(t)− g(ω)(t) for ω, t ∈ Ω. Then for every A ∈ Bo and u = 1A we
obtain ∫

A

h(ω)(t) dµ(ω) = 0 for all t ∈ Ω.
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Hence for every t ∈ Ω, h(·)(t) = 0 µ-a.e and it follows that∫
Ω

(∫
Ω

|h(ω)(t)| dµ(ω)
)

dµ(t) = 0. (3.2)

We shall show that ∫
Ω

h(ω)(ω) dµ(ω) = 0.

For indirect proof suppose that
∣∣∫

Ω
h(ω)(ω) dµ(ω)

∣∣ > 0. Then there exists A ∈ Bo,
µ(A) 6= 0 such that h(ω)(ω) > 0 or h(ω)(ω) < 0 for ω ∈ A. Without loss of generality,
let h(ω)(ω) > 0 for ω ∈ A. Since for ω ∈ Ω we have h(ω) ∈ C(Ω), then there exists a
neighbourhood Hω of ω ∈ A such that

h(ω)(t) > 0 for every t ∈ Hω.

Since µ is strictly positive, then for every ω ∈ A, µ(Hω) > 0 and hence∫
Hω

h(ω)(t) dµ(t) > 0.

Let ω0 ∈ A be given. Then, we have∫
Ω

|h(ω0)(t)| dµ(t) ≥
∫
⋃

Hω

|h(ω0)(t)| dµ(t) ≥
∫
Hω0

|h(ω0)(t)| dµ(t) > 0.

Since ω0 is arbitrary, it follows that∫
Ω

(∫
Ω

|h(ω)(t)| dµ(t)
)

dµ(ω) > 0

and, in view of Hille’s theorem (see [8, § 1, Theorem 36, p. 16]), this is in contradiction
with (3.2). Hence we finally get ∫

Ω

h(ω)(ω) dµ(ω) = 0.

Thus this follows that the trace of T is well defined and trT =
∫
Ω
f(ω)(ω) dµ. �

Grothendieck [14] showed that if Ω is a compact Hausdorff space with a positive Borel
measure µ on Ω and k(·, ·) ∈ C(Ω × Ω), then the kernel operator Tk : C(Ω) → C(Ω)
defined by:

Tk(u) :=

∫
Ω

u(ω) k(·, ω) dµ for u ∈ C(Ω),

is nuclear and has a well-defined trace trTk =
∫
Ω
k(ω, ω) dµ (see [14], [22, 6.6.2, Theorem,

p. 274]).
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Now, we can extend this formula for the trace of kernel operators Tk : B(Bo) → B(Bo).
Let k(·, ·) ∈ C(Ω× Ω). Hence for every ω ∈ Ω, k(·, ω) ∈ C(Ω). Let C(Ω, C(Ω)) denote

the Banach space of all continuous functions f : Ω → C(Ω), equipped with the uniform
norm ‖ · ‖∞.
Assume that µ ∈ ca(Bo)+. Let L∞(µ,C(Ω)) denote the space of all µ-measurable

functions g : Ω → C(Ω) such that µ − ess sup ‖g(ω)‖∞ < ∞. In view of the Pettis
measurability theorem (see [7, Theorem 2, p. 42]), we have

C(Ω, C(Ω)) ⊂ L∞(µ,C(Ω)), (3.3)

and the space L∞(µ,C(Ω)) can be embedded in the space L1(µ,C(Ω)) such that with
each function from L∞(µ,C(Ω)) is associated its µ-equivalence class in L1(µ,C(Ω)).
It is well known (see [22, 6.1.4, p. 243]) that the function:

f : Ω 3 ω 7→ k(·, ω) ∈ C(Ω),

is bounded and continuous. Then in view of (3.3), f ∈ L∞(µ,C(Ω)). Hence its µ-
equivalence class belongs to L1(µ,C(Ω)). Thus it follows that one can define the kernel
operator Tk : B(Bo) → B(Bo) by

Tk(u) :=

∫
Ω

u(ω) k(·, ω) dµ, for all u ∈ B(Bo).

For t ∈ Ω, let Φt(u) = u(t) for all u ∈ B(Bo). Then Φt ∈ C(Ω)′ and using Hille’s
theorem, for all u ∈ B(Bo), t ∈ Ω, we get

Tk(u)(t) =

∫
Ω

u(ω)Φt(k(·, ω)) dµ =

∫
Ω

u(ω) k(t, ω) dµ.

As a consequence of Theorem 2.2 and Corollary 3.1, we get

Corollary 3.2. The kernel operator Tk : B(Bo) → B(Bo) is nuclear σ-smooth and

trTk =

∫
Ω

k(ω, ω) dµ.
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