ON TRACES OF BOCHNER REPRESENTABLE OPERATORS ON THE SPACE OF BOUNDED MEASURABLE FUNCTIONS

MARIAN NOWAK¹ D AND JULIUSZ STOCHMAL² D

¹Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland (M.Nowak@wmie.uz.zgora.pl)

²Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland (juliusz.stochmal@gmail.com)

(Received 8 May 2023)

Abstract Let Σ be a σ -algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ -measurable scalar functions on Ω . Let $\tau(B(\Sigma), ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T : B(\mathcal{B}o) \to B(\mathcal{B}o)$ generated by a function $f \in L^1(\mathcal{B}o, C(\Omega))$, where Ω is a compact Hausdorff space.

Keywords: Bochner representable operators; kernel operators; nuclear operators; spaces of bounded measurable functions; trace of operator; vector measures

2020 Mathematics subject classification: 46G10; 47B10; 46E27

1. Introduction and preliminaries

Let Σ be a σ -algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ -measurable scalar functions on Ω , equipped with the uniform norm $\|\cdot\|_{\infty}$. We assume that the field of scalars is either the set of real numbers or the set of complex numbers.

Let $ba(\Sigma)$ denote the Banach space of all bounded additive scalar-valued measures λ on Σ , equipped the total variation norm $\|\lambda\| := |\lambda|(\Omega)$. The Banach dual $B(\Sigma)'$ of $B(\Sigma)$ can be identified with $ba(\Sigma)$ throughout the mapping

$$\Phi: ba(\Sigma) \ni \lambda \mapsto \Phi_{\lambda} \in B(\Sigma)',$$

where $\Phi_{\lambda}(u) := \int_{\Omega} u(\omega) d\lambda$ for $u \in B(\Sigma)$ and $\|\Phi_{\lambda}\| = \|\lambda\|$. Let $ca(\Sigma)$ denote the closed subspace of $ba(\Sigma)$ consisting of all countably additive members of $ba(\Sigma)$.

From now on we assume that $(E, \|\cdot\|_E)$ is a Banach space and $(E', \|\cdot\|_{E'})$ denotes its dual. Assume that $m: \Sigma \to E$ is a finitely additive measure. By |m|(A) (resp. ||m||(A))

© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

we denote the variation (resp. semivariation) of m on A (see [7, Definition 4, p. 2]). Then $||m||(A) \leq |m|(A)$ for $A \in \Sigma$.

If $T: B(\Sigma) \to E$ is a bounded linear operator, let

$$m_T(A) = T(\mathbb{1}_A)$$
 for $A \in \Sigma$.

Then, $T(u) = \int_{\Omega} u(\omega) dm_T$ and $||T|| = ||m_T||(\Omega)$ (see [7, Theorem 13, p. 6]).

Different classes of linear operators $T : B(\Sigma) \to E$ (weakly compact, absolutely summing, nuclear, integral, σ -smooth) have been studied in numerous papers (see [5], [6], [7], [11], [18], [17]).

For $\mu \in ca(\Sigma)^+$, let $L^1(\mu, E)$ denote the Banach space of μ -equivalence classes of all *E*-valued Bochner μ -integrable functions f on Ω , equipped with norm $||f||_1 := \int_{\Omega} ||f(\omega)||_E d\mu$.

Following [26] we can consider a class of linear operators on $B(\Sigma)$.

Definition 1.1. We say that a linear operator $T : B(\Sigma) \to E$ is Bochner representable if there exist a measure $\mu \in ca(\Sigma)^+$ and a function $f \in L^1(\mu, E)$ so that

$$T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu$$
, for all $u \in B(\Sigma)$.

The concept of nuclear operators between Banach spaces in due to Grothendieck [12], [13] (see also [28, p. 279], [21, Chap. 3], [22], [7, Chap. 6], [9, Chap. 5], [25], [23]).

Recall (see [28, p. 279], [25]) that a linear operator $T : B(\Sigma) \to E$ between Banach spaces $B(\Sigma)$ and E is said to be *nuclear* if there exist a bounded sequence (λ_n) in $ba(\Sigma)$, a bounded sequence (e_n) in E and a sequence $(\alpha_n) \in \ell^1$ so that

$$T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) e_n, \quad \text{for all } u \in B(\Sigma).$$
(1.1)

Then the *nuclear norm* of T is defined by

$$||T||_{nuc} := \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| |\lambda_n| (\Omega) ||e_n||_E \right\},\$$

where the infimum is taken over all sequences (λ_n) in $ba(\Sigma)$ and (e_n) in E and $(\alpha_n) \in \ell^1$ such that T admits a representation (1.1).

Let $\mathcal{L}(B(\Sigma), E)$ denote the Banach space of all bounded linear operators from $B(\Sigma)$ to E, equipped with the operator norm. Then in view of (1.1), we have

$$T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n} \otimes e_n \text{ in } \mathcal{L}(B(\Sigma), E),$$

where $(\alpha_n \Phi_{\lambda_n} \otimes e_n)(u) = \alpha_n \Phi_{\lambda_n}(u) e_n$ for $u \in B(\Sigma)$.

It is known that the space $\mathcal{N}(B(\Sigma), E)$ of all nuclear operators between $B(\Sigma)$ and E (equipped with the nuclear norm $\|\cdot\|_{nuc}$) is a Banach space (see [21, 3.1, Proposition, p. 51]).

Due to Diestel [5, Theorem 9] a bounded linear operator $T: B(\Sigma) \to E$ is nuclear if and only if m_T has an approximate Radon-Nikodym derivative with respect to its variation.

According to [18, Definition 2.1] we have

Definition 1.2. A linear operator $T : B(\Sigma) \to E$ is said to be σ -smooth if $||T(u_n)||_E \to 0$ whenever (u_n) is a uniformly bounded sequence in $B(\Sigma)$ such that $u_n(\omega) \to 0$ for each $\omega \in \Omega$.

By $\tau(B(\Sigma), ca(\Sigma))$ we denote the natural Mackey topology on $B(\Sigma)$. Note that $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ is a generalized DF-space, that is, $\tau(B(\Sigma), ca(\Sigma))$ is the finest locally convex topology agreeing with itself on norm-bounded sets in $B(\Sigma)$ (see [16], [18], [17], [11]).

The following characterization of σ -smooth operators $T : B(\Sigma) \to E$ will be useful (see [18, Proposition 2.2], [17, Proposition 3.1]).

Proposition 1.1. For a bounded linear operator $T : B(\Sigma) \to E$, the following statements are equivalent:

- (i) T is σ -smooth.
- (ii) T is $(\tau(B(\Sigma), ca(\Sigma)), \|\cdot\|_E)$ -continuous.
- (iii) $m_T: \Sigma \to E$ is a countably additive measure.

In this paper, we show that a linear operator $T: B(\Sigma) \to E$ is Bochner representable if and only if T is a nuclear σ -smooth operator and if and only if T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E(see Corollary 2.5 below). We derive a formula for the trace of a Bochner representable operator $T: B(\mathcal{B}o) \to B(\mathcal{B}o)$ generated by a function $f \in L^1(\mathcal{B}o, C(\Omega))$, where Ω is a compact Hausdorff space (see Corollary 3.1 below).

2. Nuclearity of Bochner representable operators on $B(\Sigma)$

We will need the following result (see [16, Theorem 3], [20, Proposition 13 and Corollary 14]).

Proposition 2.1. For a subset \mathcal{M} of $ca(\Sigma)$, the following statements are equivalent:

- (i) The family $\{\Phi_{\lambda} : \lambda \in \mathcal{M}\}$ is $\tau(B(\Sigma), ca(\Sigma))$ -equicontinuous.
- (ii) $\sup_{\lambda \in \mathcal{M}} \|\lambda\| < \infty$ and \mathcal{M} is uniformly countably additive.

Grothendieck carried over the concept of nuclear operators to locally convex spaces [12], [13] (see also [28, p. 289–293], [15, pp. 376–378], [24, Chap. 3, §7], [27, §47]). Following [24, Chap. 3, §7], [27, §47] and using Proposition 2.1 we have the following definition.

Definition 2.1. A linear operator $T : B(\Sigma) \to E$ between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and a Banach space E is said to be nuclear if there exist a bounded

and uniformly countably additive sequence (λ_n) in $ca(\Sigma)$, a bounded sequence (e_n) in Eand a sequence $(\alpha_n) \in \ell^1$ such that

$$T(u) = \sum_{n=1}^{\infty} \alpha_n \left(\int_{\Omega} u(\omega) \, d\lambda_n \right) e_n \quad \text{for all} \quad \mathbf{u} \in \mathbf{B}(\Sigma).$$
(2.1)

Then $T: B(\Sigma) \to E$ is $(\tau(B(\Sigma), ca(\Sigma)), \|\cdot\|_E)$ -compact, that is, T(V) is relatively norm compact in E for some $\tau(B(\Sigma), ca(\Sigma))$ -neighbourhood V of 0 in $B(\Sigma)$ (see [24, Chap. 3, § 7, Corollary 1], [27, Theorem 47.3]). Hence T is $(\tau(B(\Sigma), ca(\Sigma)), \|\cdot\|_E)$ -continuous.

Let us put

$$||T||_{\tau-nuc} := \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| |\lambda_n| (\Omega) ||e_n||_E \right\},\$$

where the infimum is taken over all sequences (λ_n) in $ca(\Sigma)$ and (e_n) in E and $(\alpha_n) \in \ell^1$ such that T admits a representation (2.1).

According to [19, Theorem 2.1] and Proposition 1.1 we have the following characterization of nuclear σ -smooth operators $T: B(\Sigma) \to E$.

Theorem 2.2. Assume that $T : B(\Sigma) \to E$ is a σ -smooth operator. Then the following statements are equivalent:

- (i) T is a nuclear operator between the Banach spaces $B(\Sigma)$ and E.
- (ii) $|m_T|(\Omega) < \infty$ and m_T has a $|m_T|$ -Bochner integrable derivative, that is, there exists a function $f \in L^1(|m_T|, E)$ so that $m_T(A) = \int_A f(\omega) d|m_T|$ for all $A \in \Sigma$.
- (iii) $|m_T|(\Omega) < \infty$ and T is a $|m_T|$ -Bochner integrable kernel, that is, there exists a function $f \in L^1(|m_T|, E)$ so that $T(u) = \int_{\Omega} u(\omega) f(\omega) d|m_T|$ for all $u \in B(\Sigma)$.
- (iv) T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.

In this case, $||T||_{nuc} = ||T||_{\tau-nuc} = |m_T|(\Omega).$

Making us of [8, Sect.2, F, Theorem 30, p. 26] we have the following result.

Lemma 2.3. For $\mu \in ca(\Sigma)^+$ and $f \in L^1(\mu, E)$, let us put

$$\lambda(A) := \int_A \|f(\omega)\|_E \, d\mu, \quad \text{for all} \ A \in \Sigma,$$

and

$$h_f(\omega) := f(\omega)/\|f(\omega)\|_E$$
 if $f(\omega) \neq 0$ and $h_f(\omega) := 0$ if $f(\omega) = 0$.

Then $h_f \in L^1(\lambda, E)$ and

$$\int_{\Omega} u(\omega) h_f(\omega) \, d\lambda = \int_{\Omega} u(\omega) f(\omega) \, d\mu, \quad \text{for all } u \in B(\Sigma).$$

In particular, $\int_A h_f(\omega) d\lambda = \int_A f(\omega) d\mu$ for all $A \in \Sigma$.

Theorem 2.4. Assume that $T : B(\Sigma) \to E$ is a Bochner representable operator. Then *T* is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space *E*.

Proof. There exists a measure $\mu \in ca(\Sigma)^+$ and a function $f \in L^1(\mu, E)$ so that

$$T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu$$
, for all $u \in B(\Sigma)$.

Hence

$$m_T(A) = \int_A f(\omega) d\mu$$
 and $|m_T|(A) = \int_A ||f(\omega)||_E d\mu$, for all $A \in \Sigma$,

where m_T is a countably additive measure (see [7, Theorem 4, p. 46]), and in view of Proposition 1.1 T is σ -smooth. Hence using Lemma 2.3 we get

$$m_T(A) = \int_A f(\omega) \, d\mu = \int_A h_f(\omega) \, d|m_T|, \quad \text{for all} \ A \in \Sigma,$$

where $h_f \in L^1(|m_T|, E)$. By Theorem 2.2 we derive that T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.

In view of Theorem 2.4 and Theorem 2.2 we can obtain the following characterization of Bochner representable operators $T: B(\Sigma) \to E$.

Theorem 2.5. For a linear operator $T : B(\Sigma) \to E$, the following statements are equivalent:

- (i) T is a Bochner representable operator.
- (ii) T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.
- (iii) T is a σ -smooth nuclear operator between the Banach spaces $B(\Sigma)$ and E.

As a consequence of Theorem 2.4 and Theorem 2.2, we get

Corollary 2.6. Assume that $T: B(\Sigma) \to E$ is a Bochner representable operator. Then the mapping

$$T^*: E' \ni e' \mapsto e' \circ m_T \in ca(\Sigma)$$

is a nuclear operator and $||T^*||_{nuc} = ||T||_{nuc} = |m_T|(\Omega)$.

Proof. Let $\varepsilon > 0$ be given. In view of Theorem 2.4 and Theorem 2.2 there exist a bounded and uniformly countably additive sequence (λ_n) in $ca(\Sigma)$, a bounded sequence (e_n) in E and $(\alpha_n) \in \ell^1$ so that

$$T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) e_n$$
, for all $u \in B(\Sigma)$

and

$$\sum_{n=1}^{\infty} |\alpha_n| |\lambda_n|(\Omega) ||e_n||_E \le |m_T|(\Omega) + \varepsilon.$$
(2.5)

One can show that for each $e' \in E'$, we have

$$e' \circ T = \sum_{n=1}^{\infty} \alpha_n e'(e_n) \Phi_{\lambda_n}$$
 in $B(\Sigma)'$.

Moreover, for each $e' \in E'$, we have $e' \circ m_T \in ca(\Sigma)$ and

$$(e' \circ T)(u) = \int_{\Omega} u(\omega) d(e' \circ m_T), \text{ for all } u \in B(\Sigma).$$

Let $i: E \to E''$ stand for the canonical isometry, that is, i(e)(e') = e'(e) for $e \in E$, $e' \in E'$ and $||i(e)||_{E''} = ||e||_E$. Hence for each $e' \in E'$, we get

$$T^*(e') = e' \circ m_T = \Phi^{-1}(e' \circ T) = \sum_{n=1}^{\infty} \alpha_n i(e_n)(e') \lambda_n.$$

This means that T^* is a nuclear operator and by (2.5) we get $||T^*||_{nuc} \leq |m_T|(\Omega)$.

Now, we shall show that

$$|m_T|(\Omega) \le ||T^*||_{nuc}.$$

Let $\varepsilon > 0$ be given. Since T^* is a nuclear operator, there exist a bounded sequence (e''_n) in $E^{''}$, a bounded sequence (λ_n) in $ca(\Sigma)$ and $(\alpha_n) \in \ell^1$ so that

$$T^*(e') = \sum_{n=1}^{\infty} \alpha_n \, e''_n(e') \, \lambda_n \quad \text{for} \quad e' \in E'$$

and

$$\sum_{n=1}^{\infty} |\alpha_n| \|e_n''\|_{E''} |\lambda_n|(\Omega) \le \|T^*\|_{nuc} + \varepsilon.$$

$$(2.6)$$

Then for $A \in \Sigma$, we obtain

$$(e' \circ m_T)(A) = T^*(e')(A) = \sum_{n=1}^{\infty} \alpha_n \, e''_n(e') \, \lambda_n(A).$$

Moreover, by the Hahn-Banach theorem for every $A \in \Sigma$, there exists $e'_A \in E'$ with $\|e'_A\|_{E'} = 1$ such that $\|m_T(A)\|_E = |(e'_A \circ m_T)(A)|$. Hence, if Π is a finite Σ -partition of Ω , then using (2.6) we have

$$\sum_{A\in\Pi} \|m_T(A)\|_E = \sum_{A\in\Pi} |(e'_A \circ m_T)(A)| = \sum_{A\in\Pi} \left| \sum_{n=1}^{\infty} \alpha_n e''_n(e'_A) \lambda_n(A) \right|$$
$$\leq \sum_{A\in\Pi} \left(\sum_{n=1}^{\infty} |\alpha_n| |e''_n(e'_A)| |\lambda_n(A)| \right) \leq \sum_{n=1}^{\infty} \left(|\alpha_n| ||e''_n||_{E''} \sum_{A\in\Pi} |\lambda_n(A)| \right)$$
$$\leq \sum_{n=1}^{\infty} |\alpha_n| ||e''_n||_{E''} |\lambda_n|(\Omega) \leq \|T^*\|_{nuc} + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we get $|m_T|(\Omega) \leq ||T^*||_{nuc}$ and finally $||T^*||_{nuc} = |m_T|(\Omega) = ||T||_{nuc}$.

3. Traces of Bochner representable operators

Formulas for the traces of kernel operators on Banach function spaces (in particular, $L^{p}(\mu)$ -spaces) have been the object of much study (see [14], [2], [4], [10], [22]).

Grothendieck [13, Chap. I, p. 165] showed that the notion of 'trace' can be defined for nuclear operators in Banach spaces with the approximation property (see [22, 4.6.2, Lemma, pp. 210–211]).

Recall that a Banach space $(X, \|\cdot\|_X)$ has the *approximation property* if for every compact subset K of X and every $\varepsilon > 0$ there exists a bounded finite rank operator $S : X \to X$ such that $\|x - S(x)\|_X \leq \varepsilon$ for every $x \in K$ (see [23, Chap. 4, p. 72], [7, Definition 1, p. 238]).

Note that the Banach space $B(\Sigma)$ has the approximation property. Assume first that $B(\Sigma)$ is the Banach lattice of all bounded Σ -measurable real functions on Ω . Since $(B(\Sigma), \|\cdot\|_{\infty})$ is an AM-space with the unit $\mathbb{1}_{\Omega}$, due to the Kakutani-Bohnenblust-M. and S. Krein theorem (see [1, Theorem 3.40]) $B(\Sigma)$ is lattice isometric to some C(K)-space for a unique (up to homeomorphism) compact Hausdorff space K in such a way that $\mathbb{1}_{\Omega}$ is identified with $\mathbb{1}_{K}$. This follows that $B(\Sigma)$ has the approximation property because C(K) has the approximation property (see [23, Example 4.2]). For the Banach space $B(\Sigma)$ of complex-valued functions on Ω , one has to consider real and imaginary parts separate.

Assume that $T : B(\Sigma) \to B(\Sigma)$ is a nuclear operator, that is, there exist a bounded sequence (λ_n) in $ba(\Sigma)$, a bounded sequence (w_n) in $B(\Sigma)$ and $(\alpha_n) \in \ell^1$ so that

$$T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n} \otimes w_n \quad \text{in } \mathcal{L}(B(\Sigma), B(\Sigma)).$$
(3.1)

Then the *trace* of T is given by

$$\operatorname{tr} T := \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(w_n) = \sum_{n=1}^{\infty} \alpha_n \int_{\Omega} w_n(\omega) \, d\lambda_n,$$

and it does not depend on the special choice of the nuclear representation (3.1) of T (see [10, Chap. 5, Theorem 1.2], [22, Lemma, pp. 210–211]).

From now on we assume that (Ω, \mathcal{T}) is a compact Hausdorff space and $\mathcal{B}o$ denotes the σ -algebra of Borel sets in Ω . Then $C(\Omega) \subset B(\mathcal{B}o)$.

Assume that a measure $\mu \in ca^+(\mathcal{B}o)$ is strictly positive, that is, for all $U \in \mathcal{T}$ with $U \neq \emptyset$, $\mu(U) > 0$. Then $L^1(\mu, C(\Omega)) \subset L^1(\mu, B(\mathcal{B}o))$.

Corollary 3.1. Assume that $T : B(\mathcal{B}o) \to B(\mathcal{B}o)$ is a Bochner representable operator such that

$$T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu$$
, for all $u \in B(\mathcal{B}o)$,

where $f \in L^1(\mu, C(\Omega))$. Then T has a well-defined trace

$$\operatorname{tr} T = \int_{\Omega} f(\omega)(\omega) \, d\mu.$$

Proof. Let $L^1(\mu) \otimes C(\Omega)$ denote the projective tensor product of $L^1(\mu)$ and $C(\Omega)$, equipped with the completed norm π (see [7, p. 227], [23, p. 17]). Note that for $z \in L^1(\mu) \otimes C(\Omega)$, we have

$$\pi(z) = \inf\left\{\sum_{n=1}^{\infty} |\alpha_n| \, \|v_n\|_1 \|w_n\|_{\infty}\right\},\,$$

where the infimum is taken over all sequences (v_n) in $L^1(\mu)$ and (w_n) in $C(\Omega)$ with $\lim_n \|v_n\|_1 = 0 = \lim_n \|w_n\|_\infty$ and $(\alpha_n) \in \ell^1$ such that $z = \sum_{n=1}^{\infty} \alpha_n v_n \otimes w_n$ in π -norm (see [23, Proposition 2.8, pp. 21–22]).

It is known that $L^1(\mu) \otimes C(\Omega)$ is isometrically isomorphic to the Banach space $(L^1(\mu, C(\Omega)), \|\cdot\|_1)$ by the isometry J, defined by:

$$J(v \otimes w) := v(\cdot) w \text{ for } v \in L^1(\mu), \ w \in C(\Omega)$$

(see [7, Example 10, p. 228], [23, Example 2.19, p. 29]). Then there exist sequences (v_n) in $L^1(\mu)$ and (w_n) in $C(\Omega)$ with $\lim_n \|v_n\|_1 = 0 = \lim_n \|w_n\|_\infty$ and $(\alpha_n) \in \ell^1$ such that

$$J^{-1}(f) = \sum_{n=1}^{\infty} \alpha_n \, v_n \otimes w_n \text{ in } \left(L^1(\mu) \, \hat{\otimes} \, C(\Omega), \pi \right).$$

Thus it follows that

$$f = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes w_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) w_n \text{ in } L^1(\mu, C(\Omega)),$$

and hence

$$T(u) = \sum_{n=1}^{\infty} \alpha_n \left(\int_{\Omega} u(\omega) v_n(\omega) d\mu \right) w_n, \text{ for all } u \in B(\Sigma).$$

For $n \in \mathbb{N}$, let

$$\lambda_n(A) := \int_A v_n(\omega) \, d\mu, \quad \text{for all } A \in \Sigma.$$

Note that $\lambda_n \in ca(\Sigma)$ and $|\lambda_n|(\Omega) = ||v_n||_1$ and hence $\lim \lambda_n(A) = 0$ for all $A \in \Sigma$. By the Nikodym convergence theorem (see [9, Theorem 8.6]), the family $\{\lambda_n : n \in \mathbb{N}\}$ is uniformly countably additive.

Since $\Phi_{\lambda_n}(u) = \int_{\Omega} u(\omega) d\lambda_n = \int_{\Omega} u(\omega) v_n(\omega) d\mu$ for all $u \in B(\Sigma)$ (see [3, Theorem 8C, p. 380]), we get

$$T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) w_n, \quad \text{for all } u \in B(\Sigma),$$

that is,

$$T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n} \otimes w_n \text{ in } \mathcal{L}(B(\Sigma), B(\Sigma)).$$

Hence

$$\operatorname{tr} T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(w_n) = \sum_{n=1}^{\infty} \alpha_n \int_{\Omega} w_n(\omega) \, v_n(\omega) \, d\mu.$$

For $n \in \mathbb{N}$, let $f_n = \sum_{i=1}^n \alpha_i v_i(\cdot) w_i$. Hence $\int_{\Omega} \|f(\omega) - f_n(\omega)\|_{\infty} d\mu \to 0$. Thus we get,

$$\left| \int_{\Omega} f(\omega)(\omega) \, d\mu - \sum_{i=1}^{n} \alpha_i \int_{\Omega} v_i(\omega) \, w_i(\omega) \, d\mu \right|$$

$$\leq \int_{\Omega} \left| \left(f(\omega)(\omega) - \sum_{i=1}^{n} \alpha_i v_i(\omega) \, w_i(\omega) \right) \right| d\mu \leq \int_{\Omega} \| f(\omega) - f_n(\omega) \|_{\infty} \, d\mu.$$

Let $g \in L^1(\mu, C(\Omega))$ be another function representing T, that is,

$$T(u)(t) = \int_{\Omega} u(\omega) f(\omega)(t) d\mu(\omega) = \int_{\Omega} u(\omega) g(\omega)(t) d\mu(\omega) \text{ for } u \in B(\mathcal{B}o).$$

Denote $h(\omega)(t) := f(\omega)(t) - g(\omega)(t)$ for $\omega, t \in \Omega$. Then for every $A \in \mathcal{B}o$ and $u = \mathbb{1}_A$ we obtain

$$\int_A h(\omega)(t) \, d\mu(\omega) = 0 \ \text{ for all } \ t \in \Omega$$

232

Hence for every $t \in \Omega$, $h(\cdot)(t) = 0$ μ -a.e and it follows that

$$\int_{\Omega} \left(\int_{\Omega} |h(\omega)(t)| \, d\mu(\omega) \right) \, d\mu(t) = 0.$$
(3.2)

We shall show that

$$\int_{\Omega} h(\omega)(\omega) \, d\mu(\omega) = 0$$

For indirect proof suppose that $\left|\int_{\Omega} h(\omega)(\omega) d\mu(\omega)\right| > 0$. Then there exists $A \in \mathcal{B}o$, $\mu(A) \neq 0$ such that $h(\omega)(\omega) > 0$ or $h(\omega)(\omega) < 0$ for $\omega \in A$. Without loss of generality, let $h(\omega)(\omega) > 0$ for $\omega \in A$. Since for $\omega \in \Omega$ we have $h(\omega) \in C(\Omega)$, then there exists a neighbourhood H_{ω} of $\omega \in A$ such that

$$h(\omega)(t) > 0$$
 for every $t \in H_{\omega}$.

Since μ is strictly positive, then for every $\omega \in A$, $\mu(H_{\omega}) > 0$ and hence

$$\int_{H\omega} h(\omega)(t) \, d\mu(t) > 0.$$

Let $\omega_0 \in A$ be given. Then, we have

$$\int_{\Omega} |h(\omega_0)(t)| \, d\mu(t) \ge \int_{\bigcup H_{\omega}} |h(\omega_0)(t)| \, d\mu(t) \ge \int_{H_{\omega_0}} |h(\omega_0)(t)| \, d\mu(t) > 0.$$

Since ω_0 is arbitrary, it follows that

$$\int_{\Omega} \left(\int_{\Omega} \left| h(\omega)(t) \right| d\mu(t) \right) \, d\mu(\omega) > 0$$

and, in view of Hille's theorem (see $[8, \S 1, \text{Theorem 36}, p. 16]$), this is in contradiction with (3.2). Hence we finally get

$$\int_{\Omega} h(\omega)(\omega) \, d\mu(\omega) = 0$$

Thus this follows that the trace of T is well defined and $\operatorname{tr} T = \int_{\Omega} f(\omega)(\omega) \, d\mu$.

Grothendieck [14] showed that if Ω is a compact Hausdorff space with a positive Borel measure μ on Ω and $k(\cdot, \cdot) \in C(\Omega \times \Omega)$, then the kernel operator $T_k : C(\Omega) \to C(\Omega)$ defined by:

$$T_k(u) := \int_{\Omega} u(\omega) k(\cdot, \omega) d\mu \text{ for } u \in C(\Omega),$$

is nuclear and has a well-defined trace tr $T_k = \int_{\Omega} k(\omega, \omega) d\mu$ (see [14], [22, 6.6.2, Theorem, p. 274]).

Now, we can extend this formula for the trace of kernel operators $T_k : B(\mathcal{B}o) \to B(\mathcal{B}o)$. Let $k(\cdot, \cdot) \in C(\Omega \times \Omega)$. Hence for every $\omega \in \Omega$, $k(\cdot, \omega) \in C(\Omega)$. Let $C(\Omega, C(\Omega))$ denote the Banach space of all continuous functions $f : \Omega \to C(\Omega)$, equipped with the uniform norm $\|\cdot\|_{\infty}$.

Assume that $\mu \in ca(\mathcal{B}o)^+$. Let $\mathcal{L}^{\infty}(\mu, C(\Omega))$ denote the space of all μ -measurable functions $g : \Omega \to C(\Omega)$ such that $\mu - \operatorname{ess\,sup} \|g(\omega)\|_{\infty} < \infty$. In view of the Pettis measurability theorem (see [7, Theorem 2, p. 42]), we have

$$C(\Omega, C(\Omega)) \subset \mathcal{L}^{\infty}(\mu, C(\Omega)), \tag{3.3}$$

and the space $\mathcal{L}^{\infty}(\mu, C(\Omega))$ can be embedded in the space $L^{1}(\mu, C(\Omega))$ such that with each function from $\mathcal{L}^{\infty}(\mu, C(\Omega))$ is associated its μ -equivalence class in $L^{1}(\mu, C(\Omega))$.

It is well known (see [22, 6.1.4, p. 243]) that the function:

$$f: \Omega \ni \omega \mapsto k(\cdot, \omega) \in C(\Omega),$$

is bounded and continuous. Then in view of (3.3), $f \in \mathcal{L}^{\infty}(\mu, C(\Omega))$. Hence its μ equivalence class belongs to $L^{1}(\mu, C(\Omega))$. Thus it follows that one can define the kernel operator $T_{k}: B(\mathcal{B}o) \to B(\mathcal{B}o)$ by

$$T_k(u) := \int_{\Omega} u(\omega) \, k(\cdot, \omega) \, d\mu, \quad \text{for all} \ \ u \in B(\mathcal{B}o).$$

For $t \in \Omega$, let $\Phi_t(u) = u(t)$ for all $u \in B(\mathcal{B}o)$. Then $\Phi_t \in C(\Omega)'$ and using Hille's theorem, for all $u \in B(\mathcal{B}o)$, $t \in \Omega$, we get

$$T_k(u)(t) = \int_{\Omega} u(\omega) \, \Phi_t(k(\cdot, \omega)) \, d\mu = \int_{\Omega} u(\omega) \, k(t, \omega) \, d\mu.$$

As a consequence of Theorem 2.2 and Corollary 3.1, we get

Corollary 3.2. The kernel operator $T_k : B(\mathcal{B}o) \to B(\mathcal{B}o)$ is nuclear σ -smooth and

$$\operatorname{tr} T_k = \int_{\Omega} k(\omega, \omega) \, d\mu.$$

References

- C. D. Aliprantis, and O. Burkinshaw, *Locally Solid Riesz Spaces with Applications to Economics*, Math. Surveys and Monographs, Vol. 105 (AMS, Providence, RI, 2003).
- (2) C. Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104(4): (1988), 1181–1190.
- J. B. Conway, A Course in Functional Analysis, 2nd ed., (Springer-Verlag, New York, 1990).
- (4) J. Delgado, A trace formula for nuclear operators on L^p, in *Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations*, Operator Theory: Advances and Applications, Vol. 205 (Birkhäuser, Basel, 2009), pp. 181–193.

- (5) J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, *Rev. Roumaine Math. Pures Appl.* **17** (1972), 1611–1620.
- (6) J. Diestel, Applications of weak compactness and bases to vector measures and vectorial integration, *Rev. Roumaine Math. Pures Appl.* **18** (1973), 211–224.
- (7) J. Diestel, and J. J. Uhl, Vector Measures, Math. Surveys, Vol. 15 (American Mathematical Society, Providence, RI, 1977).
- N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, (Wiley-Interscience, New York, 2000).
- (9) L. Drewnowski, Topological rings of sets, continuous set functions, integration, III, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20 (1972), 439–445.
- (10) I. Gohberg, S. Goldberg and N. Krupnik, Traces and Determinants of Linear Operators (Springer, Basel, 2000).
- W. H. Graves and W. Ruess, Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, *Contemp. Math.* 2 (1980), 189–203.
- (12) A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57–123.
- (13) A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Soc. 16 (1955), 140.
- (14) A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319–384.
- (15) H. Jarchow, *Locally Convex Spaces* (Teubner, Stuttgart, 1981).
- (16) S. S. Khurana, A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167–179.
- (17) M. Nowak, Vector measures and Mackey topologies, *Indag. Math.* **23**(1–2) (2012), 113–122.
- (18) M. Nowak, Mackey topologies and compactness in spaces of vector measures, Funct. Approx. 50(1) (2014), 191–198.
- M. Nowak, Nuclear operators and applications to kernel operators, *Math. Nachr.* 296(5) (2023), 2109–2120.
- M. Nowak, Topological properties of complex lattice of bounded measurable functions, J. Function Spaces and Appl. 2013 (2013), 343685.
- (21) A. Pietsch, Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und Ihrer Grenzebiete, Vol. 66 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- (22) A. Pietsch, Eigenvalues and s-Numbers (Akadem. Verlagsges. Geest & Portig, Leipzig, 1987).
- (23) R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).
- (24) H. H. Schaefer, *Topological Vector Spaces* (Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- (25) M. A. Sofi, Vector measures and nuclear operators, *Illin. J. Math.* **49**(2): (2005), 369–383.
- (26) A. E. Tong, Nuclear mappings on C(X), Math. Ann. **194** (1971), 213–224.
- (27) F. Trèves, Topological Vector Spaces, Distributions and Kernels, (Dover Publications, New York, 1967).
- (28) K. Yosida, Functional Analysis, 4th Ed., (Springer-Verlag, Berlin, Heidelberg, New York, 1974).