ON TRACES OF BOCHNER REPRESENTABLE OPERATORS ON THE SPACE OF BOUNDED MEASURABLE FUNCTIONS

MARIAN NOWAK¹ **D** AND JULIUSZ STOCHMAL² **D**

 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland [\(M.Nowak@wmie.uz.zgora.pl\)](mailto:M.Nowak@wmie.uz.zgora.pl)

 2 Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland [\(juliusz.stochmal@gmail.com\)](mailto:juliusz.stochmal@gmail.com)

(Received 8 May 2023)

Abstract Let Σ be a σ -algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω . Let $\tau(B(\Sigma), ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$ generated by a function $f \in L^1(\mathcal{B}_0, C(\Omega))$, where Ω is a compact Hausdorff space.

Keywords: Bochner representable operators; kernel operators; nuclear operators; spaces of bounded measurable functions; trace of operator; vector measures

2020 Mathematics subject classification: 46G10; 47B10; 46E27

1. Introduction and preliminaries

Let Σ be a σ -algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω, equipped with the uniform norm $\|\cdot\|_{\infty}$. We assume that the field of scalars is either the set of real numbers or the set of complex numbers.

Let $ba(\Sigma)$ denote the Banach space of all bounded additive scalar-valued measures λ on Σ, equipped the total variation norm $||\lambda|| := |\lambda|(\Omega)$. The Banach dual $B(\Sigma)'$ of $B(\Sigma)$ can be identified with $ba(\Sigma)$ throughout the mapping

$$
\Phi: ba(\Sigma) \ni \lambda \mapsto \Phi_{\lambda} \in B(\Sigma)^{\prime},
$$

where $\Phi_{\lambda}(u) := \int_{\Omega} u(\omega) d\lambda$ for $u \in B(\Sigma)$ and $\|\Phi_{\lambda}\| = \|\lambda\|$. Let $ca(\Sigma)$ denote the closed subspace of $ba(\Sigma)$ consisting of all countably additive members of $ba(\Sigma)$.

From now on we assume that $(E, \|\cdot\|_E)$ is a Banach space and $(E', \|\cdot\|_{E'})$ denotes its dual. Assume that $m : \Sigma \to E$ is a finitely additive measure. By $|m|(A)$ (resp. $\|m\|(A)$)

© The Author(s), 2024. Published by Cambridge University Press on Behalf C The Author(s), 2024. Published by Cambridge University Press on Benand 224
of The Edinburgh Mathematical Society.

we denote the variation (resp. semivariation) of m on A (see [\[7,](#page-11-0) Definition 4, p. 2]). Then $\|m\|(A) \leq |m|(A)$ for $A \in \Sigma$.

If $T : B(\Sigma) \to E$ is a bounded linear operator, let

$$
m_T(A) = T(\mathbb{1}_A)
$$
 for $A \in \Sigma$.

Then, $T(u) = \int_{\Omega} u(\omega) dm_T$ and $||T|| = ||m_T||(\Omega)$ (see [\[7,](#page-11-0) Theorem 13, p. 6]).

Different classes of linear operators $T : B(\Sigma) \to E$ (weakly compact, absolutely summing, nuclear, integral, σ -smooth) have been studied in numerous papers (see [\[5\]](#page-11-0), [\[6\]](#page-11-0), [\[7\]](#page-11-0), $[11], [18], [17].$ $[11], [18], [17].$ $[11], [18], [17].$ $[11], [18], [17].$ $[11], [18], [17].$ $[11], [18], [17].$

For $\mu \in ca(\Sigma)^+$, let $L^1(\mu, E)$ denote the Banach space of μ -equivalence classes of all E-valued Bochner μ -integrable functions f on Ω , equipped with norm $||f||_1 :=$ $\int_{\Omega} ||f(\omega)||_E d\mu.$

Following [\[26\]](#page-11-0) we can consider a class of linear operators on $B(\Sigma)$.

Definition 1.1. We say that a linear operator $T : B(\Sigma) \to E$ is Bochner representable if there exist a measure $\mu \in ca(\Sigma)^+$ and a function $f \in L^1(\mu, E)$ so that

$$
T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu, \quad \text{for all} \ \ u \in B(\Sigma).
$$

The concept of nuclear operators between Banach spaces in due to Grothendieck [\[12\]](#page-11-0), [\[13\]](#page-11-0) (see also [\[28,](#page-11-0) p. 279], [\[21,](#page-11-0) Chap. 3], [\[22\]](#page-11-0), [\[7,](#page-11-0) Chap. 6], [\[9,](#page-11-0) Chap. 5], [\[25\]](#page-11-0), [\[23\]](#page-11-0)).

Recall (see [\[28,](#page-11-0) p. 279], [\[25\]](#page-11-0)) that a linear operator $T : B(\Sigma) \to E$ between Banach spaces $B(\Sigma)$ and E is said to be *nuclear* if there exist a bounded sequence (λ_n) in $ba(\Sigma)$, a bounded sequence (e_n) in E and a sequence $(\alpha_n) \in \ell^1$ so that

$$
T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) e_n, \quad \text{for all } u \in B(\Sigma). \tag{1.1}
$$

Then the *nuclear norm* of T is defined by

$$
||T||_{nuc} := \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| |\lambda_n| (\Omega) ||e_n||_E \right\},\
$$

where the infimum is taken over all sequences (λ_n) in $ba(\Sigma)$ and (e_n) in E and $(\alpha_n) \in \ell^1$ such that T admits a representation (1.1) .

Let $\mathcal{L}(B(\Sigma), E)$ denote the Banach space of all bounded linear operators from $B(\Sigma)$ to E , equipped with the operator norm. Then in view of (1.1) , we have

$$
T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda n} \otimes e_n \text{ in } \mathcal{L}(B(\Sigma), E),
$$

where $(\alpha_n \Phi_{\lambda_n} \otimes e_n)(u) = \alpha_n \Phi_{\lambda_n}(u) e_n$ for $u \in B(\Sigma)$.

It is known that the space $\mathcal{N}(B(\Sigma), E)$ of all nuclear operators between $B(\Sigma)$ and E (equipped with the nuclear norm $\|\cdot\|_{nuc}$) is a Banach space (see [\[21,](#page-11-0) 3.1, Proposition, p. 51]).

Due to Diestel [\[5,](#page-11-0) Theorem 9] a bounded linear operator $T : B(\Sigma) \to E$ is nuclear if and only if m_T has an approximate Radon-Nikodym derivative with respect to its variation.

According to [\[18,](#page-11-0) Definition 2.1] we have

Definition 1.2. A linear operator $T : B(\Sigma) \rightarrow E$ is said to be σ -smooth if $||T(u_n)||_E \to 0$ whenever (u_n) is a uniformly bounded sequence in $B(\Sigma)$ such that $u_n(\omega) \to 0$ for each $\omega \in \Omega$.

By $\tau(B(\Sigma), ca(\Sigma))$ we denote the natural Mackey topology on $B(\Sigma)$. Note that $(B(\Sigma), \tau(B(\Sigma)), ca(\Sigma))$ is a generalized DF-space, that is, $\tau(B(\Sigma), ca(\Sigma))$ is the finest locally convex topology agreeing with itself on norm-bounded sets in $B(\Sigma)$ (see [\[16\]](#page-11-0), [\[18\]](#page-11-0), $[17], [11]$ $[17], [11]$ $[17], [11]$.

The following characterization of σ -smooth operators $T : B(\Sigma) \to E$ will be useful (see [\[18,](#page-11-0) Proposition 2.2], [\[17,](#page-11-0) Proposition 3.1]).

Proposition 1.1. For a bounded linear operator $T : B(\Sigma) \rightarrow E$, the following statements are equivalent:

- (i) T is σ -smooth.
- (ii) T is $(\tau(B(\Sigma), ca(\Sigma)), \| \cdot \|_E)$ -continuous.
- (iii) $m_T : \Sigma \to E$ is a countably additive measure.

In this paper, we show that a linear operator $T : B(\Sigma) \to E$ is Bochner representable if and only if T is a nuclear σ -smooth operator and if and only if T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E (see Corollary 2.5 below). We derive a formula for the trace of a Bochner representable operator $T : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$ generated by a function $f \in L^1(\mathcal{B}_0, C(\Omega))$, where Ω is a compact Hausdorff space (see Corollary 3.1 below).

2. Nuclearity of Bochner representable operators on $B(\Sigma)$

We will need the following result (see [\[16,](#page-11-0) Theorem 3], [\[20,](#page-11-0) Proposition 13 and Corollary 14]).

Proposition 2.1. For a subset M of ca(Σ), the following statements are equivalent:

- (i) The family $\{\Phi_{\lambda} : \lambda \in \mathcal{M}\}\$ is $\tau(B(\Sigma), ca(\Sigma))$ -equicontinuous.
- (ii) $\sup_{\lambda \in \mathcal{M}} ||\lambda|| < \infty$ and M is uniformly countably additive.

Grothendieck carried over the concept of nuclear operators to locally convex spaces [\[12\]](#page-11-0), [\[13\]](#page-11-0) (see also [\[28,](#page-11-0) p. 289–293], [\[15,](#page-11-0) pp. 376–378], [\[24,](#page-11-0) Chap. 3, § 7], [\[27,](#page-11-0) § 47]). Following $[24, Chap. 3, § 7], [27, § 47]$ and using Proposition 2.1 we have the following definition.

Definition 2.1. A linear operator $T : B(\Sigma) \to E$ between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and a Banach space E is said to be nuclear if there exist a bounded and uniformly countably additive sequence (λ_n) in ca(Σ), a bounded sequence (e_n) in E and a sequence $(\alpha_n) \in \ell^1$ such that

$$
T(u) = \sum_{n=1}^{\infty} \alpha_n \left(\int_{\Omega} u(\omega) d\lambda_n \right) e_n \text{ for all } u \in B(\Sigma). \tag{2.1}
$$

Then $T : B(\Sigma) \to E$ is $(\tau(B(\Sigma), ca(\Sigma)), \| \cdot \|_E)$ -compact, that is, $T(V)$ is relatively norm compact in E for some $\tau(B(\Sigma), ca(\Sigma))$ -neighbourhood V of 0 in $B(\Sigma)$ (see [\[24,](#page-11-0) Chap. 3, § 7, Corollary 1, [\[27,](#page-11-0) Theorem 47.3]). Hence T is $(\tau(B(\Sigma), ca(\Sigma)), \| \cdot \|_F)$ -continuous.

Let us put

$$
||T||_{\tau-nuc} := \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| |\lambda_n| (\Omega) ||e_n||_E \right\},\,
$$

where the infimum is taken over all sequences (λ_n) in $ca(\Sigma)$ and (e_n) in E and $(\alpha_n) \in \ell^1$ such that T admits a representation (2.1) .

According to [\[19,](#page-11-0) Theorem 2.1] and Proposition 1.1 we have the following characterization of nuclear σ -smooth operators $T : B(\Sigma) \to E$.

Theorem 2.2. Assume that $T : B(\Sigma) \to E$ is a σ -smooth operator. Then the following statements are equivalent:

- (i) T is a nuclear operator between the Banach spaces $B(\Sigma)$ and E.
- (ii) $|m_T|(\Omega) < \infty$ and m_T has a $|m_T|$ -Bochner integrable derivative, that is, there exists a function $f \in L^1(|m_T|, E)$ so that $m_T(A) = \int_A f(\omega) d|m_T|$ for all $A \in \Sigma$.
- (iii) $|m_T|(\Omega) < \infty$ and T is a $|m_T|$ -Bochner integrable kernel, that is, there exists a function $f \in L^1(|m_T|, E)$ so that $T(u) = \int_{\Omega} u(\omega) f(\omega) d|m_T|$ for all $u \in B(\Sigma)$.
- (iv) T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.

In this case, $||T||_{nuc} = ||T||_{\tau-nuc} = |m_T|(\Omega)$.

Making us of [\[8,](#page-11-0) Sect.2, F, Theorem 30, p. 26] we have the following result.

Lemma 2.3. For $\mu \in ca(\Sigma)^+$ and $f \in L^1(\mu, E)$, let us put

$$
\lambda(A) := \int_A ||f(\omega)||_E \, d\mu, \quad \text{for all} \ \ A \in \Sigma,
$$

and

$$
h_f(\omega) := f(\omega)/\|f(\omega)\|_E \quad \text{if} \quad f(\omega) \neq 0 \quad \text{and} \quad h_f(\omega) := 0 \quad \text{if} \quad f(\omega) = 0.
$$

Then $h_f \in L^1(\lambda, E)$ and

$$
\int_{\Omega} u(\omega) h_f(\omega) d\lambda = \int_{\Omega} u(\omega) f(\omega) d\mu, \text{ for all } u \in B(\Sigma).
$$

In particular, $\int_A h_f(\omega) d\lambda = \int_A f(\omega) d\mu$ for all $A \in \Sigma$.

Theorem 2.4. Assume that $T : B(\Sigma) \to E$ is a Bochner representable operator. Then T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.

Proof. There exists a measure $\mu \in ca(\Sigma)^+$ and a function $f \in L^1(\mu, E)$ so that

$$
T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu, \text{ for all } u \in B(\Sigma).
$$

Hence

$$
m_T(A) = \int_A f(\omega) d\mu \text{ and } |m_T|(A) = \int_A ||f(\omega)||_E d\mu, \text{ for all } A \in \Sigma,
$$

where m_T is a countably additive measure (see [\[7,](#page-11-0) Theorem 4, p.46]), and in view of Proposition [1.1](#page-2-0) T is σ -smooth. Hence using Lemma [2.3](#page-3-0) we get

$$
m_T(A) = \int_A f(\omega) d\mu = \int_A h_f(\omega) d|m_T|, \text{ for all } A \in \Sigma,
$$

where $h_f \in L^1(|m_T|, E)$. By Theorem [2.2](#page-3-0) we derive that T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.

In view of Theorem 2.4 and Theorem [2.2](#page-3-0) we can obtain the following characterization of Bochner representable operators $T : B(\Sigma) \to E$.

Theorem 2.5. For a linear operator $T : B(\Sigma) \to E$, the following statements are equivalent:

- (i) T is a Bochner representable operator.
- (ii) T is a nuclear operator between the locally convex space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ and the Banach space E.
- (iii) T is a σ -smooth nuclear operator between the Banach spaces $B(\Sigma)$ and E.

As a consequence of Theorem 2.4 and Theorem [2.2,](#page-3-0) we get

Corollary 2.6. Assume that $T : B(\Sigma) \to E$ is a Bochner representable operator. Then the mapping

$$
T^*: E' \ni e' \mapsto e' \circ m_T \in ca(\Sigma)
$$

is a nuclear operator and $||T^*||_{nuc} = ||T||_{nuc} = |m_T|(\Omega)$.

Proof. Let $\varepsilon > 0$ be given. In view of Theorem 2.4 and Theorem [2.2](#page-3-0) there exist a bounded and uniformly countably additive sequence (λ_n) in $ca(\Sigma)$, a bounded sequence (e_n) in E and $(\alpha_n) \in \ell^1$ so that

$$
T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) e_n, \text{ for all } u \in B(\Sigma)
$$

and

$$
\sum_{n=1}^{\infty} |\alpha_n| |\lambda_n|(\Omega) ||e_n||_E \le |m_T|(\Omega) + \varepsilon. \tag{2.5}
$$

One can show that for each $e' \in E'$, we have

$$
e' \circ T = \sum_{n=1}^{\infty} \alpha_n e'(e_n) \Phi_{\lambda_n} \text{ in } B(\Sigma)'
$$

Moreover, for each $e' \in E'$, we have $e' \circ m_T \in ca(\Sigma)$ and

$$
(e' \circ T)(u) = \int_{\Omega} u(\omega) d(e' \circ m_T), \text{ for all } u \in B(\Sigma).
$$

Let $i: E \to E''$ stand for the canonical isometry, that is, $i(e)(e') = e'(e)$ for $e \in E$, $e' \in E'$ and $||i(e)||_{E''} = ||e||_E$. Hence for each $e' \in E'$, we get

$$
T^*(e') = e' \circ m_T = \Phi^{-1}(e' \circ T) = \sum_{n=1}^{\infty} \alpha_n i(e_n)(e') \lambda_n.
$$

This means that T^* is a nuclear operator and by (2.5) we get $||T^*||_{nuc} \leq |m_T|(\Omega)$.

Now, we shall show that

$$
|m_T|(\Omega) \leq ||T^*||_{nuc}.
$$

Let $\varepsilon > 0$ be given. Since T^* is a nuclear operator, there exist a bounded sequence (e''_n) in E'', a bounded sequence (λ_n) in $ca(\Sigma)$ and $(\alpha_n) \in \ell^1$ so that

$$
T^*(e') = \sum_{n=1}^{\infty} \alpha_n e''_n(e') \lambda_n \text{ for } e' \in E'
$$

and

$$
\sum_{n=1}^{\infty} |\alpha_n| \|e''_n\|_{E''} |\lambda_n|(\Omega) \le \|T^*\|_{nuc} + \varepsilon.
$$
\n(2.6)

Then for $A \in \Sigma$, we obtain

$$
(e' \circ m_T)(A) = T^*(e')(A) = \sum_{n=1}^{\infty} \alpha_n e''_n(e') \lambda_n(A).
$$

Moreover, by the Hahn-Banach theorem for every $A \in \Sigma$, there exists $e'_A \in E'$ with $||e'_{A}||_{E'} = 1$ such that $||m_T(A)||_E = |(e'_{A} \circ m_T)(A)|$. Hence, if Π is a finite Σ -partition of Ω , then using (2.6) we have

$$
\sum_{A \in \Pi} ||m_T(A)||_E = \sum_{A \in \Pi} |(e'_A \circ m_T)(A)| = \sum_{A \in \Pi} \left| \sum_{n=1}^{\infty} \alpha_n e''_n(e'_A) \lambda_n(A) \right|
$$

$$
\leq \sum_{A \in \Pi} \left(\sum_{n=1}^{\infty} |\alpha_n| |e''_n(e'_A)| |\lambda_n(A)| \right) \leq \sum_{n=1}^{\infty} \left(|\alpha_n| ||e''_n||_{E''} \sum_{A \in \Pi} |\lambda_n(A)| \right)
$$

$$
\leq \sum_{n=1}^{\infty} |\alpha_n| ||e''_n||_{E''} |\lambda_n|(\Omega) \leq ||T^*||_{nuc} + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, we get $|m_T|(\Omega) \leq ||T^*||_{nuc}$ and finally $||T^*||_{nuc} = |m_T|(\Omega) =$ $||T||_{nuc}$.

3. Traces of Bochner representable operators

Formulas for the traces of kernel operators on Banach function spaces (in particular, $L^p(\mu)$ -spaces) have been the object of much study (see [\[14\]](#page-11-0), [\[2\]](#page-10-0), [\[4\]](#page-10-0), [\[10\]](#page-11-0), [\[22\]](#page-11-0)).

Grothendieck [\[13,](#page-11-0) Chap. I, p. 165] showed that the notion of 'trace' can be defined for nuclear operators in Banach spaces with the approximation property (see $[22, 4.6.2]$ $[22, 4.6.2]$) Lemma, pp. 210–211]).

Recall that a Banach space $(X, \| \cdot \|_X)$ has the *approximation property* if for every compact subset K of X and every $\varepsilon > 0$ there exists a bounded finite rank operator $S: X \to X$ such that $||x - S(x)||_X \leq \varepsilon$ for every $x \in K$ (see [\[23,](#page-11-0) Chap. 4, p. 72], [\[7,](#page-11-0) Definition 1, p. 238]).

Note that the Banach space $B(\Sigma)$ has the approximation property. Assume first that B(Σ) is the Banach lattice of all bounded Σ-measurable real functions on Ω . Since $(B(\Sigma), \|\cdot\|_{\infty})$ is an AM-space with the unit $\mathbb{1}_{\Omega}$, due to the Kakutani-Bohnenblust-M. and S. Krein theorem (see [\[1,](#page-10-0) Theorem 3.40]) $B(\Sigma)$ is lattice isometric to some $C(K)$ -space for a unique (up to homeomorphism) compact Hausdorff space K in such a way that 1_{Ω} is identified with 1_K . This follows that $B(\Sigma)$ has the approximation property because $C(K)$ has the approximation property (see [\[23,](#page-11-0) Example 4.2]). For the Banach space $B(\Sigma)$ of complex-valued functions on Ω , one has to consider real and imaginary parts separate.

Assume that $T : B(\Sigma) \to B(\Sigma)$ is a nuclear operator, that is, there exist a bounded sequence (λ_n) in $ba(\Sigma)$, a bounded sequence (w_n) in $B(\Sigma)$ and $(\alpha_n) \in \ell^1$ so that

$$
T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n} \otimes w_n \quad \text{in} \quad \mathcal{L}(B(\Sigma), B(\Sigma)). \tag{3.1}
$$

Then the *trace* of T is given by

$$
\operatorname{tr} T := \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(w_n) = \sum_{n=1}^{\infty} \alpha_n \int_{\Omega} w_n(\omega) d\lambda_n,
$$

and it does not depend on the special choice of the nuclear representation (3.1) of T (see [\[10,](#page-11-0) Chap. 5, Theorem 1.2], [\[22,](#page-11-0) Lemma, pp. 210–211]).

From now on we assume that (Ω, \mathcal{T}) is a compact Hausdorff space and $\mathcal{B}o$ denotes the σ-algebra of Borel sets in Ω. Then C(Ω) ⊂ B(Bo).

Assume that a measure $\mu \in ca^+(\mathcal{B}_0)$ is strictly positive, that is, for all $U \in \mathcal{T}$ with $U \neq \emptyset$, $\mu(U) > 0$. Then $L^1(\mu, C(\Omega)) \subset L^1(\mu, B(\mathcal{B}_0)).$

Corollary 3.1. Assume that $T : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$ is a Bochner representable operator such that

$$
T(u) = \int_{\Omega} u(\omega) f(\omega) d\mu, \quad \text{for all } u \in B(\mathcal{B}o),
$$

where $f \in L^1(\mu, C(\Omega))$. Then T has a well-defined trace

$$
\operatorname{tr} T = \int_{\Omega} f(\omega)(\omega) \, d\mu.
$$

Proof. Let $L^1(\mu) \hat{\otimes} C(\Omega)$ denote the projective tensor product of $L^1(\mu)$ and $C(\Omega)$, equipped with the completed norm π (see [\[7,](#page-11-0) p. 227], [\[23,](#page-11-0) p. 17]). Note that for $z \in$ $L^1(\mu) \,\hat{\otimes}\, C(\Omega)$, we have

$$
\pi(z) = \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| \, ||v_n||_1 ||w_n||_{\infty} \right\},\,
$$

where the infimum is taken over all sequences (v_n) in $L^1(\mu)$ and (w_n) in $C(\Omega)$ with $\lim_{n} ||v_n||_1 = 0 = \lim_{n} ||w_n||_{\infty}$ and $(\alpha_n) \in \ell^1$ such that $z = \sum_{n=1}^{\infty} \alpha_n v_n \otimes w_n$ in π -norm (see [\[23,](#page-11-0) Proposition 2.8, pp. 21–22]).

It is known that $L^1(\mu) \hat{\otimes} C(\Omega)$ is isometrically isomorphic to the Banach space $(L^1(\mu, C(\Omega)), \|\cdot\|_1)$ by the isometry J, defined by:

$$
J(v \otimes w) := v(\cdot) w \text{ for } v \in L^1(\mu), w \in C(\Omega)
$$

(see [\[7,](#page-11-0) Example 10, p. 228], $[23,$ Example 2.19, p. 29]). Then there exist sequences (v_n) in $L^1(\mu)$ and (w_n) in $C(\Omega)$ with $\lim_n ||w_n||_1 = 0 = \lim_n ||w_n||_{\infty}$ and $(\alpha_n) \in \ell^1$ such that

$$
J^{-1}(f) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes w_n \text{ in } (L^1(\mu) \hat{\otimes} C(\Omega), \pi).
$$

Thus it follows that

$$
f = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes w_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) w_n \text{ in } L^1(\mu, C(\Omega)),
$$

and hence

$$
T(u) = \sum_{n=1}^{\infty} \alpha_n \left(\int_{\Omega} u(\omega) \, v_n(\omega) \, d\mu \right) w_n, \quad \text{for all} \ \ u \in B(\Sigma).
$$

For $n \in \mathbb{N}$, let

$$
\lambda_n(A) := \int_A v_n(\omega) d\mu, \text{ for all } A \in \Sigma.
$$

Note that $\lambda_n \in ca(\Sigma)$ and $|\lambda_n|(\Omega) = ||v_n||_1$ and hence $\lim \lambda_n(A) = 0$ for all $A \in \Sigma$. By the Nikodym convergence theorem (see [\[9,](#page-11-0) Theorem 8.6]), the family $\{\lambda_n : n \in \mathbb{N}\}\$ is uniformly countably additive.

Since $\Phi_{\lambda_n}(u) = \int_{\Omega} u(\omega) d\lambda_n = \int_{\Omega} u(\omega) v_n(\omega) d\mu$ for all $u \in B(\Sigma)$ (see [\[3,](#page-10-0) Theorem 8C, p. 380]), we get

$$
T(u) = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(u) w_n, \text{ for all } u \in B(\Sigma),
$$

that is,

$$
T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n} \otimes w_n \text{ in } \mathcal{L}(B(\Sigma), B(\Sigma)).
$$

Hence

$$
\operatorname{tr} T = \sum_{n=1}^{\infty} \alpha_n \Phi_{\lambda_n}(w_n) = \sum_{n=1}^{\infty} \alpha_n \int_{\Omega} w_n(\omega) v_n(\omega) d\mu.
$$

For $n \in \mathbb{N}$, let $f_n = \sum_{i=1}^n \alpha_i v_i(\cdot) w_i$. Hence $\int_{\Omega} ||f(\omega) - f_n(\omega)||_{\infty} d\mu \to 0$. Thus we get,

$$
\left| \int_{\Omega} f(\omega)(\omega) d\mu - \sum_{i=1}^{n} \alpha_{i} \int_{\Omega} v_{i}(\omega) w_{i}(\omega) d\mu \right|
$$

$$
\leq \int_{\Omega} \left| \left(f(\omega)(\omega) - \sum_{i=1}^{n} \alpha_{i} v_{i}(\omega) w_{i}(\omega) \right) \right| d\mu \leq \int_{\Omega} ||f(\omega) - f_{n}(\omega)||_{\infty} d\mu.
$$

Let $g \in L^1(\mu, C(\Omega))$ be another function representing T, that is,

$$
T(u)(t) = \int_{\Omega} u(\omega) f(\omega)(t) d\mu(\omega) = \int_{\Omega} u(\omega) g(\omega)(t) d\mu(\omega) \text{ for } u \in B(\mathcal{B}o).
$$

Denote $h(\omega)(t) := f(\omega)(t) - g(\omega)(t)$ for $\omega, t \in \Omega$. Then for every $A \in \mathcal{B}$ o and $u = \mathbb{1}_A$ we obtain

$$
\int_A h(\omega)(t) d\mu(\omega) = 0 \text{ for all } t \in \Omega.
$$

Hence for every $t \in \Omega$, $h(\cdot)(t) = 0$ μ -a.e and it follows that

$$
\int_{\Omega} \left(\int_{\Omega} |h(\omega)(t)| \, d\mu(\omega) \right) \, d\mu(t) = 0. \tag{3.2}
$$

We shall show that

$$
\int_{\Omega} h(\omega)(\omega) d\mu(\omega) = 0.
$$

For indirect proof suppose that $\left| \int_{\Omega} h(\omega)(\omega) d\mu(\omega) \right| > 0$. Then there exists $A \in \mathcal{B}$ o, $\mu(A) \neq 0$ such that $h(\omega)(\omega) > 0$ or $h(\omega)(\omega) < 0$ for $\omega \in A$. Without loss of generality, let $h(\omega)(\omega) > 0$ for $\omega \in A$. Since for $\omega \in \Omega$ we have $h(\omega) \in C(\Omega)$, then there exists a neighbourhood H_{ω} of $\omega \in A$ such that

$$
h(\omega)(t) > 0 \text{ for every } t \in H_{\omega}.
$$

Since μ is strictly positive, then for every $\omega \in A$, $\mu(H_{\omega}) > 0$ and hence

$$
\int_{H_{\omega}} h(\omega)(t) d\mu(t) > 0.
$$

Let $\omega_0 \in A$ be given. Then, we have

$$
\int_{\Omega} |h(\omega_0)(t)| d\mu(t) \ge \int_{\bigcup H_{\omega}} |h(\omega_0)(t)| d\mu(t) \ge \int_{H_{\omega_0}} |h(\omega_0)(t)| d\mu(t) > 0.
$$

Since ω_0 is arbitrary, it follows that

$$
\int_{\Omega} \left(\int_{\Omega} |h(\omega)(t)| \, d\mu(t) \right) \, d\mu(\omega) > 0
$$

and, in view of Hille's theorem (see $[8, \S 1,$ $[8, \S 1,$ Theorem 36, p. 16]), this is in contradiction with (3.2) . Hence we finally get

$$
\int_{\Omega} h(\omega)(\omega) d\mu(\omega) = 0.
$$

Thus this follows that the trace of T is well defined and $tr T = \int_{\Omega} f(\omega)(\omega) d\mu$.

Grothendieck [\[14\]](#page-11-0) showed that if Ω is a compact Hausdorff space with a positive Borel measure μ on Ω and $k(\cdot, \cdot) \in C(\Omega \times \Omega)$, then the kernel operator $T_k : C(\Omega) \to C(\Omega)$ defined by:

$$
T_k(u) := \int_{\Omega} u(\omega) \, k(\cdot, \omega) \, d\mu \quad \text{for} \quad u \in C(\Omega),
$$

is nuclear and has a well-defined trace tr $T_k = \int_{\Omega} k(\omega, \omega) d\mu$ (see [\[14\]](#page-11-0), [\[22,](#page-11-0) 6.6.2, Theorem, p. 274]).

Now, we can extend this formula for the trace of kernel operators $T_k : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$. Let $k(\cdot, \cdot) \in C(\Omega \times \Omega)$. Hence for every $\omega \in \Omega$, $k(\cdot, \omega) \in C(\Omega)$. Let $C(\Omega, C(\Omega))$ denote the Banach space of all continuous functions $f : \Omega \to C(\Omega)$, equipped with the uniform norm $\|\cdot\|_{\infty}$.

Assume that $\mu \in ca(\mathcal{B}_0)^+$. Let $\mathcal{L}^{\infty}(\mu, C(\Omega))$ denote the space of all μ -measurable functions $g : \Omega \to C(\Omega)$ such that $\mu - \operatorname{ess} \sup ||g(\omega)||_{\infty} < \infty$. In view of the Pettis measurability theorem (see $[7,$ Theorem 2, p. 42]), we have

$$
C(\Omega, C(\Omega)) \subset \mathcal{L}^{\infty}(\mu, C(\Omega)),
$$
\n(3.3)

and the space $\mathcal{L}^{\infty}(\mu, C(\Omega))$ can be embedded in the space $L^{1}(\mu, C(\Omega))$ such that with each function from $\mathcal{L}^{\infty}(\mu, C(\Omega))$ is associated its μ -equivalence class in $L^{1}(\mu, C(\Omega))$.

It is well known (see $[22, 6.1.4, p. 243]$ $[22, 6.1.4, p. 243]$) that the function:

$$
f: \Omega \ni \omega \mapsto k(\cdot, \omega) \in C(\Omega),
$$

is bounded and continuous. Then in view of (3.3), $f \in \mathcal{L}^{\infty}(\mu, C(\Omega))$. Hence its μ equivalence class belongs to $L^1(\mu, C(\Omega))$. Thus it follows that one can define the kernel operator $T_k : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$ by

$$
T_k(u) := \int_{\Omega} u(\omega) \, k(\cdot, \omega) \, d\mu, \quad \text{for all} \ \ u \in B(\mathcal{B}o).
$$

For $t \in \Omega$, let $\Phi_t(u) = u(t)$ for all $u \in B(\mathcal{B}_0)$. Then $\Phi_t \in C(\Omega)'$ and using Hille's theorem, for all $u \in B(\mathcal{B}_0)$, $t \in \Omega$, we get

$$
T_k(u)(t) = \int_{\Omega} u(\omega) \, \Phi_t(k(\cdot, \omega)) \, d\mu = \int_{\Omega} u(\omega) \, k(t, \omega) \, d\mu.
$$

As a consequence of Theorem [2.2](#page-3-0) and Corollary [3.1,](#page-7-0) we get

Corollary 3.2. The kernel operator $T_k : B(\mathcal{B}_0) \to B(\mathcal{B}_0)$ is nuclear σ -smooth and

$$
\operatorname{tr} T_k = \int_{\Omega} k(\omega, \omega) \, d\mu.
$$

References

- (1) C. D. Aliprantis, and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Math. Surveys and Monographs, Vol. 105 (AMS, Providence, RI, 2003).
- (2) C. Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104(4): (1988), 1181–1190.
- (3) J. B. Conway, A Course in Functional Analysis, 2nd ed., (Springer-Verlag, New York, 1990).
- (4) J. Delgado, A trace formula for nuclear operators on L^p , in *Pseudo-Differential Operators*: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications, Vol. 205 (Birkhäuser, Basel, 2009), pp. 181–193.
- (5) J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 1611–1620.
- (6) J. Diestel, Applications of weak compactness and bases to vector measures and vectorial integration, Rev. Roumaine Math. Pures Appl. 18 (1973), 211–224.
- (7) J. Diestel, and J. J. Uhl, Vector Measures, Math. Surveys, Vol. 15 (American Mathematical Society, Providence, RI, 1977).
- (8) N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, (Wiley-Interscience, New York, 2000).
- (9) L. Drewnowski, Topological rings of sets, continuous set functions, integration, III, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20 (1972), 439-445.
- (10) I. Gohberg, S. Goldberg and N. Krupnik, Traces and Determinants of Linear Operators (Springer, Basel, 2000).
- (11) W. H. Graves and W. Ruess, Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, Contemp. Math. 2 (1980), 189–203.
- (12) A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57–123.
- (13) A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Soc. 16 (1955), 140.
- (14) A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319–384.
- (15) H. Jarchow, Locally Convex Spaces (Teubner, Stuttgart, 1981).
- (16) S. S. Khurana, A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167–179.
- (17) M. Nowak, Vector measures and Mackey topologies, *Indag. Math.* **23** $(1-2)$ (2012) , 113–122.
- (18) M. Nowak, Mackey topologies and compactness in spaces of vector measures, Funct. Approx. $50(1)$ (2014), 191-198.
- (19) M. Nowak, Nuclear operators and applications to kernel operators, Math. Nachr. 296(5) (2023), 2109–2120.
- (20) M. Nowak, Topological properties of complex lattice of bounded measurable functions, J. Function Spaces and Appl. 2013 (2013), 343685.
- (21) A. Pietsch, Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und Ihrer Grenzebiete, Vol. 66 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- (22) A. Pietsch, Eigenvalues and s-Numbers (Akadem. Verlagsges. Geest & Portig, Leipzig, 1987).
- (23) R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).
- (24) H. H. Schaefer, Topological Vector Spaces (Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- (25) M. A. Sofi, Vector measures and nuclear operators, Illin. J. Math. 49(2): (2005), 369–383.
- (26) A. E. Tong, Nuclear mappings on $C(X)$, Math. Ann. 194 (1971), 213-224.
- (27) F. Trèves, Topological Vector Spaces, Distributions and Kernels, (Dover Publications, New York, 1967).
- (28) K. Yosida, Functional Analysis, 4th Ed., (Springer-Verlag, Berlin, Heidelberg, New York, 1974).