Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T05:42:52.368Z Has data issue: false hasContentIssue false

The Turing heritage for plant biology: all spots and stripes?

Published online by Cambridge University Press:  13 January 2025

Eric Siero
Affiliation:
Mathematical and Statistical Methods (Biometris), Wageningen University & Research, Wageningen, 6708PB, The Netherlands
Eva E. Deinum*
Affiliation:
Mathematical and Statistical Methods (Biometris), Wageningen University & Research, Wageningen, 6708PB, The Netherlands
*
Corresponding author: Eva E. Deinum Email: [email protected]

Abstract

In ‘The chemical basis of morphogenesis’ (1952), Alan Turing introduced an idea that revolutionised our thinking about pattern formation. He proposed that diffusion could lead to the spontaneous formation of regular patterns. Here, we discuss the impact of Turing’s idea on plant science using three well-established examples at different scales: ROP patterning inside single cells, epidermal patterning across several cells and whole vegetation patterns. Also at intermediate levels, e.g., organ spacing, plants look surprisingly regular. But not all regular patterns are Turing patterns, careful observation and prediction of the patterning process—not just the final pattern—is critical to distinguish between mechanisms.

Type
Classics
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with John Innes Centre

1. Introduction

In 1952, Alan Turing put forward a model that, without diffusion, remains in a stable spatially homogeneous steady state, but with diffusion can spontaneously form regular patterns. We now call this a reaction-diffusion system. The idea was revolutionary, as diffusion was previously understood as a great equalizing process, that blurs and erases, not creates patterns. With ‘The chemical basis of morphogenesis’ (Turing, Reference Turing1952), Turing was a front runner in applied mathematics (Dawes, Reference Dawes2016), lead the way to development of the concept of dissipative structure (Prigogine & Nicolis, Reference Prigogine and Nicolis1967, see glossary), helped explain oscillatory patterns in the Belousov–Zhabotinsky reaction (Zaikin & Zhabotinsky, Reference Zaikin and Zhabotinsky1970) up to the eventual observation of stationary Turing patterns in a chemical reaction (Castets et al., Reference Castets, Dulos, Boissonade and De Kepper1990) and spurred activity in mathematical and developmental biology (e.g., (Murray, Reference Murray2003)).

As can be seen from the citation graph (Figure 1), however, there was a significant delay before the idea of Turing was picked up and became mainstream. Two events did not help with the promotion. First, the discovery of the double-helix structure of DNA in 1953 (Franklin & Gosling, Reference Franklin and Gosling1953; Watson & Crick, Reference Watson and Crick1953; Wilkins et al., Reference Wilkins, Stokes and Wilson1953) lead to a focus on genetics rather than self-organisation (Ball, Reference Ball2015). Second, with Turing’s death in 1954, the main proponent left the scene. Turing himself envisioned application to plant science, which is the focus of the present article. Much of the early advancement was left in the hands of the botanist C.W. Wardlaw, with whom Turing discussed applications of his theory to plant science, including phyllotaxis (e.g., Wardlaw, Reference Wardlaw1953).

Figure 1. Annual citations to Turing’s paper ((Turing, Reference Turing1952) and (Turing, Reference Turing1990) combined) according to Web of Science. Citations to individual editions in thin lines, with shades of blue as indicated in the graph. Thick line shows the sum. Data retrieved on 23 August 2024.

Some seventy years down the line, we have learned that phyllotaxis is far more complicated than the simplest reaction-diffusion system exhibiting Turing patterns, with modern models including directed transport of the plant hormone auxin via dynamically positioned, polarly localised PIN proteins and often more (Hartmann et al., Reference Hartmann, de Reuille and Kuhlemeier2019; Jonsson et al., Reference Jonsson, Heisler, Shapiro, Meyerowitz and Mjolsness2006; Reinhardt & Gola, Reference Reinhardt and Gola2022; Smith et al., Reference Smith, Guyomarc’h, Mandel, Reinhardt, Kuhlemeier and Prusinkiewicz2006). In simple contexts with static PIN distributions, auxin movement can be mapped onto a diffusion-advection model (Boot et al., Reference Boot, Hille, Libbenga, Peletier, van Spronsen, van Duijn and Offringa2016; Mitchison, Reference Mitchison1980). At a more abstract level, moreover, the PIN/auxin module (the ‘up the gradient’ phenomenological rule for PIN polarisation as used in (Jonsson et al., Reference Jonsson, Heisler, Shapiro, Meyerowitz and Mjolsness2006; Smith et al., Reference Smith, Guyomarc’h, Mandel, Reinhardt, Kuhlemeier and Prusinkiewicz2006) and others) has been compared to a Turing system and can produce all standard types of Turing patterns by varying relevant parameters. In this, the polarisation of PIN proteins towards existing primordia produces inhibitory fields of low auxin around them, thus fulfilling the role of ‘long range inhibitor’ (Sahlin et al., Reference Sahlin, Soderberg and Jonsson2009). So, if phyllotaxis is governed by a Turing instability at all, this certainly requires a liberal definition of it. Once the idea was out there, however, plant scientists started seeing spots and stripes in many different areas of plant science.

Here, we address the influence of (Turing, Reference Turing1952) on plant biology with help of three prominent examples of likely Turing systems and a counterexample. But first we revisit the popular interpretation of Gierer and Meinhardt (Gierer & Meinhardt, Reference Gierer and Meinhardt1972), whom at the time of submission were unaware of Turing’s publication (Meinhardt, Reference Meinhardt2012). For a basic mathematical analysis of Turing instability we refer to Segel and Jackson (Reference Segel and Jackson1972) that appeared in the same year as (Gierer & Meinhardt, Reference Gierer and Meinhardt1972).

2. The basic concept

Gierer and Meinhardt put forward the intuitive concept of short range facilitation and long range inhibition. In the simplest case, only two components are needed, with different diffusion coefficients (Figure 2a and b).

Figure 2. Different forms of the Turing system illustrated conceptually. Stars indicate different (active) substances, circles indicate substrates (e.g., inactive forms) of the same coloured substances. Graphs sketch the 1D concentration profiles in steady state. Line styles and colours are the same as the borders of the corresponding substances. Note that the inhibitor/depleted substrate profiles are shallower, due to their relatively higher diffusion coefficients. Cyan graphs for the mutual activation scenario (c) are shifted a little for visualization purposes.

The slowly diffusing component is self-activating, meaning that perturbations from equilibrium are reinforced by the component itself. The self-activation can result from auto-catalysis or facilitation (see glossary). This component is often referred to as the activator and because of the slow diffusion, facilitation is only short range.

The other component has a larger diffusion coefficient and is, in a mathematical sense, self-inhibiting. This means that perturbations from equilibrium are reduced by the component itself. If this component also inhibits the activator, it is referred to as an inhibitor, if it is required to produce the activator, it is referred to as a depleted substrate. Mathematically, there is no significant distinction between inhibitor and depleted substrate, because one can easily transform one form into the other (Figure 2a and b: Flipping the shallow curve around the x-axis interconverts the graphs of a and b). For example, in the context of dryland vegetation patterns, water can be regarded as a depleted substrate. If one would replace water by lack-of-water in the model, lack-of-water acts as an inhibitor (Siero, Reference Siero2020).

The critical wavelength ( $l_c$ ) against which the spatially homogeneous steady state first becomes unstable depends on the diffusion coefficients, but scaling slowly: if both diffusion coefficients simultaneously increase two orders of magnitude the critical wavelength only grows one order of magnitude, or more general $l_c \sim \sqrt {D_1\cdot D_2/(c_1D_1+c_2D_2)}$ (Segel & Jackson, Reference Segel and Jackson1972, equation (13) with ${l}_c\sim 1/$ wave number $k$ ). Also parameters without a length dimension can impact the pattern wavelength (e.g., Deinum & Jacobs, Reference Deinum and Jacobs2024). Interestingly, if the spatially homogeneous equilibrium is almost unstable against spatially homogeneous perturbations, the wavelength of emerging patterns can become very large, even with low diffusion coefficients. Note, however, that, contrary to systems with a single localised source, there is no need for individual molecules to travel from one side to the other.

In a given system, it may be difficult to identify components with sufficiently different diffusion coefficients. Here are some known ways to fulfil or circumvent this condition:

In three (or more) component systems, Turing instability is possible without a single activator component, e.g. there can be two components that are both not self-activating with a positive feedback loop between them (e.g., Figure 2c and d). There are again two possibilities: they either activate (c) each other or they inhibit (d) each other (Meinhardt, Reference Meinhardt2012). Mathematically, one can again transform one form into the other. In two-component systems, stationary patterns emerge; if the number of components is larger than two, also oscillatory patterns can emerge (White & Gilligan, Reference White and Gilligan1998). Something else that is possible with more than two components is the appearance of Turing instability in a system with non-mobile components and diffusing components, in which the diffusing components all have the same diffusion coefficient, but interaction with the non-mobile components gives them different effective diffusion coefficients as in Lengyel and Epstein (Reference Lengyel and Epstein1992).

3. Example 1: ROP proteins (within single cells)

Inside single plant cells, we find the evolutionary conserved patterning system of the Rho-of-Plants (ROP) proteins. These proteins are involved in many intracellular membrane patterning processes, specifying a single domain, e.g., in cell polarity and localised (tip) growth, or multiple, e.g., developing puzzle shaped cells (Figure 3a), or complex secondary cell wall patterns in xylem (Deinum & Jacobs, Reference Deinum and Jacobs2024; Müller, Reference Müller2023; Pan et al., Reference Pan, Pérez-Henriquez, Van Norman and Yang2023). In the popular (simplified) description, ROPs have an active, membrane bound state and an inactive, cytosolic state. As diffusion in the cytosol is faster than in the membrane, the requirement for different diffusivities is met and the system can form Turing patterns via a ‘substrate-depletion’ mechanism (Jacobs et al., Reference Jacobs, Molenaar and Deinum2019).

Figure 3. Examples of likely Turing patterns in plant biology (a–c). Cartoons with stars and circles refer to Figure 2. (a) ROP proteins govern many cases of local cell growth and other local cell wall modifications, including the puzzle shape of many leaf epidermal cells (Deinum & Jacobs, Reference Deinum and Jacobs2024). In this particular example, multiple ROPs occur in a mutually inhibiting interaction. Each ROP functions via a depleted substrate mechanism, in which the active form diffuses slower than the inactive form (Deinum & Jacobs, Reference Deinum and Jacobs2024). (b) Patterning of trichoblasts (that will produce root hairs or trichomes) and atrichoblast (that will not) in epidermal tissues is goverened by multiple transcription factors, here a simplified network for trichomes is shown (Balkunde et al., Reference Balkunde, Deneer, Bechtel, Zhang, Herberth, Pesch, Jaegle, Fleck and Hülskamp2020). IC: inhibitor-complex; AC: activator-complex; other acronyms refer to individual transcription factors. The ones functioning as ‘inhibitor’ (TRY and CPC) are smaller and can move via plasmodesmata to neighbouring cells (Grebe, Reference Grebe2012). Both activator-inhibitor and substrate depletion models exist for the system. For best explanation of the patterning phenotype of the ttg1-9 mutant, a combination of activator-inhibitor and substrate (TTG1)-depletion elements is required (Balkunde et al., Reference Balkunde, Deneer, Bechtel, Zhang, Herberth, Pesch, Jaegle, Fleck and Hülskamp2020). In drylands, vegetation and bare soil occur in patterns like spots or stripes (Deblauwe et al., Reference Deblauwe, Barbier, Couteron, Lejeune and Bogaert2008) mediated via local water availability. Water preferentially infiltrates near vegetation, resulting in a net flow from bare to vegetated areas (Ludwig et al., Reference Ludwig, Wilcox, Breshears, Tongway and Imeson2005) along the depicted transect. (d) Counterexample: Although lateral roots are regularly spaced along the main root (arrows), it is unlikely that their spacing is controlled by a Turing-like mechanism (van den Berg et al., Reference Ber, van den, Yalamanchili, De Gernier, Teixeira, Beeckman, Scheres, Willemsen and Ten Tusscher2021).

An important topic in the mathematical literature about ROPs and related small GTPases from fungi and animals is how and when multiple clusters of active ROP can stably, or at least transiently, coexist (Champneys et al., Reference Champneys, Al Saadi, Breña–Medina, Grieneisen, Marée, Verschueren and Wuyts2021; Deinum & Jacobs, Reference Deinum and Jacobs2024; Goryachev & Leda, Reference Goryachev and Leda2020; Jacobs et al., Reference Jacobs, Molenaar and Deinum2019). This question is very important for plant biology, as several ROP-controlled patterns strictly require stable coexistence of multiple clusters (Jacobs et al., Reference Jacobs, Molenaar and Deinum2019), such as the numerous lobes formed on leaf epidermal ‘pavement’ cells (Fu et al., Reference Fu, Li and Yang2002; Fu et al., Reference Fu, Ying, Zheng, Wasteneys and Yang2005; Fu et al., Reference Fu, Tongda, Zhu, Wen and Yang2009), the number of which can even increase during development as the cells grow (Sánchez-Corrales et al., Reference Sánchez-Corrales, Hartley, Van Rooij, Marée and Grieneisen2018), and the regularly spaced secondary cell wall reinforcements in different xylem types (Higa et al., Reference Higa, Kijima, Sasaki, Takatani, Asano, Kondo, Wakazaki, Sato, Toyooka and Demura2024; Nagashima et al., Reference Nagashima, Tsugawa, Mochizuki, Sasaki, Fukuda and Oda2018; Oda & Fukuda, Reference Oda and Fukuda2012, Reference Oda and Fukuda2013). Whether a ROP-like model ultimately produces always a single cluster, or allows for the stable coexistence of multiple clusters given a sufficiently large domain, can be understood via cluster level bookkeeping, accounting the amount of active ROP with a single ordinary differential equation per cluster (Jacobs et al., Reference Jacobs, Molenaar and Deinum2019). Both types of patterns can form, however, from an unstable homogeneous steady state through a Turing instability and initially can look very similar. This illustrates the importance of the non-linearities and the far-from-equilibrium dynamics for ultimate model behaviour.

4. Example 2: Epidermal tissues (several cells)

Moving up a level, striking examples that are associated with Turing patterns can be found in epidermal tissues. Leaves and other above-ground parts are often covered with stomata for gas exchange and trichomes (Figure 3b) for protection and/or secretion of specialized metabolites. Similarly, root hairs may be restricted to particular cell files in certain species. For optimal function, these cells should appear evenly distributed over the epidermal surface, but where exactly they are formed is of secondary importance. These requirements can easily be solved by a Turing type patterning mechanism, and the underlying patterning mechanisms indeed seem to function as such (Balkunde et al., Reference Balkunde, Deneer, Bechtel, Zhang, Herberth, Pesch, Jaegle, Fleck and Hülskamp2020; Bouyer et al., Reference Bouyer, Geier, Kragler, Schnittger, Pesch, Wester, Balkunde, Timmer, Fleck and Hülskamp2008; Grebe, Reference Grebe2012; Robinson & Roeder, Reference Robinson and Roeder2015). Root hairs and trichome patterning share many components. Interestingly, some act cell non-autonomously, that is, they move intercellularly via plasmodesmata, whereas others don’t. This gives the required basis for a difference in diffusion coefficients. Just as playing with the diffusion coefficients in a plain Turing model changes the wavelength of the resulting pattern, defects in the regulation of plasmodesmatal aperture, which directly affect the intercellular diffusion of ‘small’ molecules, have severe impact on the patterning of root hairs (Kim et al., Reference Kim, Hempel, Sha, Pfluger and Zambryski2002) and stomata (Guseman et al., Reference Guseman, Lee, Bogenschutz, Peterson, Virata, Xie, Kanaoka, Hong and Torii2010; Kong et al., Reference Kong, Karve, Willet, Chen, Oden and Shpak2012; Okawa et al., Reference Okawa, Hayashi, Yamashita, Matsubayashi and Ogawa-Ohnishi2023).

5. Example 3: Dryland vegetation patterns (multiple plants; 10–100 m)

Contemporaneous with Turing’s paper, vegetation patterns (Figure 3c) were reported for the first time (Macfadyen, Reference Macfadyen1950), but it would take about fifty years before they would be firmly linked. Using satellite imagery, it became apparent that spatially periodic vegetation interspersed with bare soil—creating a spot, stripe, labyrinthine or gap pattern—is present in drylands around the globe (Deblauwe et al., Reference Deblauwe, Barbier, Couteron, Lejeune and Bogaert2008).

Vegetation spreads slowly and increases soil permeability. The water flows relatively fast, until it infiltrates into the soil somewhere (or has evaporated). Because of the difference in permeability, there is a net flow of water from bare ground to vegetated patches (Ludwig et al., Reference Ludwig, Wilcox, Breshears, Tongway and Imeson2005). Thus, vegetation locally increases water availability (facilitation) at the cost of water availability in surrounding bare soil (competition).

The first multi-component model explaining dryland vegetation patterns this way did not incorporate water diffusion, but instead downhill flow of water by advection (Klausmeier, Reference Klausmeier1999). Later models included water diffusion, allowing for Turing instability, and extended to three components by distinguishing between surface and soil water (HilleRisLambers et al., Reference HilleRisLambers, Rietkerk, Bosch, Prins and Kroon2001; Gilad et al., Reference Gilad, von Hardenberg, Provenzale, Shachak and Meron2004). Having advection, spatial pattern formation is possible without different diffusion coefficients. There are fundamental differences though, as advection has a direction and, therefore, introduces anisotropy, which is visible in the selection of stripe patterns and their orientation (Siero et al., Reference Siero, Doelman, Eppinga, Rademacher, Rietkerk and Siteur2015). In wetter ecosystems, other factors like nutrient distribution could cause vegetation patterning in similar ways (Rietkerk & van de Koppel, Reference Rietkerk and van de Koppel2008).

6. Counterexample: lateral root spacing

Also at intermediate levels, plants look strikingly regular, e.g., in the spacing of lateral roots (Figure 3d), vascular bundles or branches. Contrary to the canonical Turing pattern, lateral roots and side branches are not formed all at once, but develop one by one as the root or shoot grows. As of yet, no convincing model has been established that matches our other examples in simplicity. One option is that at these levels, there are so many factors affecting the pattern, that the Turing mechanism is hard to discern. Another option is that these processes are regulated in a very different manner that happens to produce regular patterns as well. A thoroughly investigated example of the latter case can be found in the work on lateral root priming by van den Berg et al. (Reference Ber, van den, Yalamanchili, De Gernier, Teixeira, Beeckman, Scheres, Willemsen and Ten Tusscher2021). The authors derive from their models a new type of spacing mechanism, dubbed ‘reflux-and-growth’, and compare this with a ‘Turing mechanism’ on a unipolarly growing domain and a ‘clock-and-wavefront’ mechanism (known from the regular sequential specification of somites in vertebrates (Cooke & Zeeman, Reference Cooke and Zeeman1976)). Of these, reflux-and-growth best describes the experimentally observed effects of growth rate on the spacing of primed sites and the timing of their their occurrence. This example demonstrates that there are multiple ways of obtaining a regular pattern, and distinguishing between different mechanisms requires looking beyond single static patterns, e.g., by also investigating temporal dynamics and trends in responses to parameter changes.

7. Discussion

With ‘The chemical basis of morphogenesis’, Turing has brought us a revolutionary new way of thinking about regular patterns in nature. This has tremendously advanced our understanding of plant biology across scales. Nonetheless, it took a long time for his ideas to become widely accepted. Perhaps not surprisingly, because even for something as ‘simple’ as plain chemical reactions, it took several decades to experimentally observe stationary Turing patterns (Castets et al., Reference Castets, Dulos, Boissonade and De Kepper1990).

In much of his manuscript, Turing works with a single ring of 20 cells. He comments that even when ‘a reasonably complete mathematical analysis was possible, the computational treatment of a particular case was most illuminating.’ That is, he immediately recognizes the illustrative power of computer simulations. For non-linear systems the use of computer simulations avoids simplifying assumptions and the disadvantage of only obtaining particular results ‘is probably of comparatively little importance’. This attitude prevails in current day studies of development and other spatial processes.

The use of computer simulations has the added advantage that it is much easier to obtain temporal solutions. The example of lateral root spacing clearly illustrates why this is important: multiple mechanisms exist that can give rise to regular patterns that look like Turing patterns in steady state, but may show very different dynamic behaviour. Different mechanisms may also respond differently to perturbations (including parameter changes). Rigorously testing model predictions on these aspects is particularly important if the actual components fulfilling the roles of activator and inhibitor/depleted substrate are not (yet) known.

At the end of his manuscript, Turing humbly admits that the examples he uses are much simpler than most biological systems, ending with: ‘It is thought, however, that the imaginary biological systems which have been treated, and the principles which have been discussed, should be of some help in interpreting real biological forms’. The complexity of many biological systems does not automatically rule out a Turing mechanism. As described above (Figure 2c and d), the role of a single self-activating component could actually be fulfilled by two sets of mutually activating or inhibiting components, and/or be facilitated by accessory proteins. Similarly, a single arrow could consist of a long chain of reactions. Upon more detailed observation, both types of complications are found in the ROP system and the epidermal patterning systems, yet, the necessary simplifications for extracting the Turing mechanism are straightforward and easily accepted. Vegetation patterns occur at such high level, that we cannot even imagine that there would be no additional factors involved, yet we very easily accept this level of simplification. Phyllotaxis and other patterns of organ spacing, however, may be in a ‘hard’ length range for straightforward reaction-diffusion systems. These patterns would be subject to the same biological constraints as the epidermal patterns in Example 2, but it is impossible to scale up the pattern wavelengths by changing the key proteins involved for faster diffusing ones. A ten-fold increase would be required for both ‘activator’ and ‘inhibitor’, which, for spherical proteins obeying the Stokes-Einstein relation, would require a 1000-fold reduction in the number of amino acid (AA) residues, whereas the proteins involved are much shorter (Caprice (CPC): 94 AA; Werewolf (MYB66): 203 AA). As a further complicating factor, cell walls act as barriers that reduce the range of effective diffusion coefficients (Crick, Reference Crick1970; Deinum, Reference Deinum2013). For organ spacing, the cellular nature of the tissue cannot be ignored—it may even be critical to the process replacing diffusion (e.g., Sahlin et al., Reference Sahlin, Soderberg and Jonsson2009). This cellularity, however, invites the formulation of rather complex models, including diverse cellular responses, which in turn are very hard to simplify to the extent that the equations reveal the mathematical nature of the patterning mechanism. Although tools exist that help to find Turing instability in larger reaction diffusion systems (e.g. Marcon et al. (Reference Marcon, Diego, Sharpe and Müller2016)), they do not overcome the increased uncertainty about parameter values and model structure inherent to larger models.

All in all, we now know just about enough about phyllotaxis to safely state that Turing picked a very hard problem to start his career in plant science.

8. Conclusion

Regardless of whether the mechanism underlying the botanical phenomenon of our interest turns out to be truly caused by a Turing instability, or not, Turing has inspired us to ask questions about what can cause spontaneous patterning behaviour. On the one hand, the great success of the idea does not mean that every regular pattern is a Turing pattern. On the other hand, Turing instabilites are not at all restricted to simple systems. In the details of the pattern specification, as well as the development of the actual objects that follow the pattern, biology shows its full complexity, or, as Turing allegedly has said about the zebra: ‘Well, the stripes are easy. But what about the horse part?’

Author contributions

E.S. and E.E.D. together wrote the manuscript.

Financial support

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Competing interest

None

Data Availability Statement

Not applicable

Glossary of terms

  • Reaction-diffusion system A mathematical model consisting of multiple components where the time evolution of each component is prescribed by diffusion (spatial spread) and reaction (changes in quantity through interaction with other components).

  • Advection Directed movement of a substance in a certain fixed direction, as opposed to diffusion that results in spreading out equally in all directions.

  • Isotropy Uniformity in all orientations. Diffusion typically is isotropic, advection is not.

  • Non-linearity Term that is non-linear, meaning that doubling of substance quantities does not (always) result in doubling of the relevant rate.

  • Auto-catalysis A (chemical) reaction where the reaction rate increases with the concentration of a reaction product.

  • Facilitation A feedback where presence of a substance stimulates an increase of the substance itself.

  • Dissipative structure In open systems, i.e., where energy or mass can be exchanged with the surroundings, the second law of thermodynamics does not apply: instead of only a spatially homogeneous equilibrium, spatial patterns may persist. These patterns were referred to as dissipative structure by Ilya Prigogine (nobel prize in chemistry in 1977) as they require a continuous exchange of matter and/or energy.

  • Far-from-equilibrium When the state is not close to a spatially homogeneous equilibrium, which in a thermodynamic setting would be a state with minimal energy.

Footnotes

Associate Editor: Ari Pekka Mahönen

References

Balkunde, R., Deneer, A., Bechtel, H., Zhang, B., Herberth, S., Pesch, M., Jaegle, B., Fleck, C., & Hülskamp, M. (2020). Identification of the trichome patterning core network using data from weak ttg1 alleles to constrain the model space. Cell Reports, 33(11), 108497. https://doi.org/10.1016/j.celrep.2020.108497.CrossRefGoogle ScholarPubMed
Ball, P. (2015). Forging patterns & making waves from biology to geology: a commentary on turing (1952) the chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140218. https://doi.org/10.1098/rstb.2014.0218.CrossRefGoogle ScholarPubMed
Ber, van den, T., Yalamanchili, K., De Gernier, H., Teixeira, J. S., Beeckman, T., Scheres, B., Willemsen, V., & Ten Tusscher, K (2021). A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Developmental Cell, 56(15), 21762191.CrossRefGoogle Scholar
Boot, K. JM, Hille, S. C., Libbenga, K. R., Peletier, L. A., van Spronsen, P. C., van Duijn, B., & Offringa, R. (2016). Modelling the dynamics of polar auxin transport in inflorescence stems of arabidopsis thaliana. Journal of Experimental Botany, 67(3), 649666.CrossRefGoogle ScholarPubMed
Bouyer, D., Geier, F., Kragler, F., Schnittger, A., Pesch, M., Wester, K., Balkunde, R., Timmer, J., Fleck, C., & Hülskamp, M. (2008). Two-dimensional patterning by a trapping/depletion mechanism: the role of ttg1 and gl3 in arabidopsis trichome formation. PLoS Biology, 6(6), e141. https://doi.org/10.1371/journal.pbio.0060141.CrossRefGoogle ScholarPubMed
Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Physical Review Letter, 64(24), 29532956. https://doi.org/10.1103/PhysRevLett.64.2953.CrossRefGoogle ScholarPubMed
Champneys, A. R., Al Saadi, F., Breña–Medina, V. F, Grieneisen, V. A., Marée, A. F. M., Verschueren, N., & Wuyts, B. (2021). Bistability, wave pinning and localisation in natural reactiondiffusion systems. Physica D: Nonlinear Phenomena, 416, 132735. https://doi.org/10.1016/j.physd.2020.132735.CrossRefGoogle Scholar
Cooke, J., & Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of theoretical biology, 58(2), 455476. https://doi.org/10.1016/S0022-5193(76)80131-2.CrossRefGoogle ScholarPubMed
Crick, F. (1970). Diffusion in embryogenesis. Nature, 225(5231, January), 420422. https://doi.org/10.1038/225420a0.CrossRefGoogle ScholarPubMed
Dawes, J. H. P. (2016). After 1952: the later development of alan turing’s ideas on the mathematics of pattern formation. Historia Mathematica, 43(1), 4964. https://doi.org/10.1016/j.hm.2015.03.003.CrossRefGoogle Scholar
Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O., & Bogaert, J. (2008). The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography, 17, 715723. https://doi.org/10.1111/j.1466-8238.2008.00413.x.CrossRefGoogle Scholar
Deinum, E. E. (2013). Simple models for complex questions on plant development. PhD diss, Wageningen University.Google Scholar
Deinum, E. E., & Jacobs, B. (2024). Rho of plants patterning: linking mathematical models and molecular diversity. Journal of Experimental Botany, 75(5), 12741288. https://doi.org/10.1093/jxb/erad447.CrossRefGoogle ScholarPubMed
Franklin, R. E., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171(4356, April), 740741. https://doi.org/10.1038/171740a0.CrossRefGoogle ScholarPubMed
Fu, Y., Li, H., & Yang, Z. (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. The Plant Cell Online, 14(4), 777794. https://doi.org/10.1105/tpc.001537.CrossRefGoogle ScholarPubMed
Fu, Y., Tongda, X., Zhu, L., Wen, M., & Yang, Z. (2009). A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Current Biology, 19(21), 18271832. https://doi.org/10.1016/j.cub.2009.08.052.CrossRefGoogle ScholarPubMed
Fu, Y., Ying, G., Zheng, Z., Wasteneys, G., & Yang, Z. (2005). Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell, 120(5) 687700. https://doi.org/10.1016/j.cell.2004.12.026.CrossRefGoogle ScholarPubMed
Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. [In eng]. Kybernetik, 12(1, December), 3039. https://doi.org/10.1007/BF00289234.CrossRefGoogle ScholarPubMed
Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., & Meron, E. (2004). Ecosystem engineers: from pattern formation to habitat creation. Physical Review Letters, 93, 14. https://doi.org/10.1103/PhysRevLett.93.098105.CrossRefGoogle ScholarPubMed
Goryachev, A. B, & Leda, M.( 2020). Compete or coexist? why the same mechanisms of symmetry breaking can yield distinct outcomes. Cells, 9(9), 2011. https://doi.org/10.3390/cells9092011.CrossRefGoogle ScholarPubMed
Grebe, M. (2012). The patterning of epidermal hairs in arabidopsis–updated. Current Opinion in Plant Biology, 15(1, February), 3137. https://doi.org/10.1016/j.pbi.2011.10.010.CrossRefGoogle ScholarPubMed
Guseman, J. M., Lee, J. S., Bogenschutz, N. L., Peterson, K. M, Virata, R. E., Xie, B., Kanaoka, M. M., Hong, Z., & Torii, K. U. (2010). Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in arabidopsis chorus (glucan synthase-like 8). [In eng]. Development, 137(10, May), 17311741. https://doi.org/10.1242/dev.049197.CrossRefGoogle ScholarPubMed
Hartmann, F. P., de Reuille, P. B., & Kuhlemeier, C. (2019). Toward a 3d model of phyllotaxis based on a biochemically plausible auxin-transport mechanism. PLoS computational biology, 15(4), e1006896. https://doi.org/10.1371/journal.pcbi.1006896.CrossRefGoogle Scholar
Heisler, M. G., Hamant, O., Krupinski, P., Uyttewaal, M., Ohno, C., Jönsson, H., Traas, J., & Meyerowitz, E. M. 2010. Alignment between pin1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biology, 8(10), e1000516. https://doi.org/10.1371/journal.pbio.1000516.CrossRefGoogle ScholarPubMed
Higa, T., Kijima, S. T., Sasaki, T., Takatani, S., Asano, R., Kondo, Y., Wakazaki, M., Sato, M., Toyooka, K., Demura, T., et al. (2024). Microtubule-associated phase separation of midd1 tunes cell wall spacing in xylem vessels in arabidopsis thaliana. Nature Plants, 10(1), 100117. https://doi.org/10.1038/s41477-023-01593-9.CrossRefGoogle ScholarPubMed
HilleRisLambers, R., Rietkerk, M., Bosch, F. V. D., Prins, H. H. T., & Kroon, H. D. (2001). Vegetation pattern formation in semi-arid grazing systems. Ecology, 82, 5061. https://doi.org/10.1890/0012-9658(2001)082%5B0050:VPFISA%5D2.0.CO;2.CrossRefGoogle Scholar
Jacobs, B., Molenaar, J., & Deinum, E. E. (2019). Small gtpase patterning: how to stabilise cluster coexistence. PloS one, 14(3), e0213188. https://doi.org/10.1371/journal.pone.0213188.CrossRefGoogle ScholarPubMed
Jonsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M., & Mjolsness, E. (2006). An auxin-driven polarized transport model for phyllotaxis. [In eng]. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 16331638. https://doi.org/10.1073/pnas.0509839103.CrossRefGoogle ScholarPubMed
Kim, I., Hempel, F. D., Sha, K., Pfluger, J., & Zambryski, P. C. (2002). Identification of a developmental transition in plasmodesmatal function during embryogenesis in arabidopsis thaliana. [In eng]. Development, 129 5, March), 12611272.CrossRefGoogle ScholarPubMed
Klausmeier, C. A. (1999). Regular and irregular patterns in semi-arid vegetation. Science, 284, 18261828.CrossRefGoogle Scholar
Kong, D., Karve, R., Willet, A., Chen, M-K., Oden, J., & Shpak, E. D. (2012). Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein kobito1. [In eng]. Plant Physiology, 159(1, May), 156168. https://doi.org/10.1104/pp.112.194563.CrossRefGoogle ScholarPubMed
Lengyel, I., & Epstein, I. R. (1992). A chemical approach to designing Turing patterns in reaction-diffusion systems. Proceedings of the National Academy of Sciences, 89(9), 39773979. https://doi.org/10.1073/pnas.89.9.3977.CrossRefGoogle ScholarPubMed
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., & Imeson, A. C. (2005). Vegetation patches and runofferosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86(2), 288297. https://doi.org/10.1890/03-0569.CrossRefGoogle Scholar
Macfadyen, W. (1950). Vegetation patterns in the semi-desert plains of british somaliland. Geographical Journal, 116, 199211. https://doi.org/10.2307/1789384.CrossRefGoogle Scholar
Marcon, L., Diego, X., Sharpe, J., & Müller, P. (2016). High-throughput mathematical analysis identifies turing networks for patterning with equally diffusing signals. Elife, 5, e14022. https://doi.org/10.7554/eLife.14022.001.CrossRefGoogle ScholarPubMed
Meinhardt, H. (2012). Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus, 2(4), 407416. https://doi.org/10.1098/rsfs.2011.0097.CrossRefGoogle ScholarPubMed
Mitchison, G. J. (1980). The dynamics of auxin transport. Proceedings of the Royal Society of London . Series B. Biological Sciences, 209(1177), 489511.Google Scholar
Müller, S. (2023). Update: on selected rop cell polarity mechanisms in plant cell morphogenesis. Plant Physiology, 193(1), 2641. https://doi.org/10.1093/plphys/kiad229.CrossRefGoogle ScholarPubMed
Murray, J. D., ed. (2003). Mathematical biology ii: spatial models and biomedical applications. Springer New York. https://doi.org/10.1007/b98869.CrossRefGoogle Scholar
Murray, J. D., Maini, P. K., & Tranquillo, R. T. (1988). Mechanochemical models for generating biological pattern and form in development. Physics Reports, 171(2), 5984. https://doi.org/10.1016/0370-1573(88)90003-8.CrossRefGoogle Scholar
Nagashima, Y., Tsugawa, S., Mochizuki, A., Sasaki, T., Fukuda, H., & Oda, Y. (2018). A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Scientific Reports, 8(1), 11542. https://doi.org/10.1038/s41598-018-29543-y.CrossRefGoogle ScholarPubMed
Oda, Y., & Fukuda, H. (2012). Initiation of cell wall pattern by a rho- and microtubule-driven symmetry breaking. Science, 337(6100), 13331336. https://doi.org/10.1126/science.1222597.CrossRefGoogle ScholarPubMed
Oda, Y., & Fukuda, H. (2013). Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. The Plant Cell Online, 25(11), 44394450. https://doi.org/10.1105/tpc.113.117853.CrossRefGoogle ScholarPubMed
Okawa, R., Hayashi, Y., Yamashita, Y., Matsubayashi, Y., & Ogawa-Ohnishi, M. (2023). Arabinogalactan protein polysaccharide chains are required for normal biogenesis of plasmodesmata. The Plant Journal, 113(3), 493503. https://doi.org/10.1111/tpj.16061.CrossRefGoogle ScholarPubMed
Pan, X., Pérez-Henriquez, P., Van Norman, J. M., & Yang, Z. (2023). Membrane nanodomains: dynamic nanobuilding blocks of polarized cell growth. Plant Physiology kiad288. https://doi.org/10.1093/plphys/kiad288.CrossRefGoogle ScholarPubMed
Pavliotis, G. A., & Stuart, A. M. (2005). Periodic homogenization for inertial particles. Physica D: Nonlinear Phenomena, 204(3), 161187. https://doi.org/10.1016/j.physd.2005.04.011.CrossRefGoogle Scholar
Prigogine, I., & Nicolis, G. (1967). On Symmetry-Breaking Instabilities in Dissipative Systems. The Journal of Chemical Physics, 46(9), 35423550. https://doi.org/10.1063/1.1841255.CrossRefGoogle Scholar
Reinhardt, D., & Gola, E. M. (2022). Law and order in plants–the origin and functional relevance of phyllotaxis. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.04.005.CrossRefGoogle ScholarPubMed
Rietkerk, M., & van de Koppel, J. (2008). Regular pattern formation in real ecosystems. Trends in Ecology & Evolution, 23, 169175. https://doi.org/10.1016/j.tree.2007.10.013.CrossRefGoogle ScholarPubMed
Robinson, D. O., & Roeder, A. HK. (2015). Themes and variations in cell type patterning in the plant epidermis. Current Opinion in Genetics & Development, 32, 5565. https://doi.org/10.1016/j.gde.2015.01.008.CrossRefGoogle ScholarPubMed
Rovinsky, A. B. & Menzinger, M. (1992). Chemical instability induced by a differential flow. Physical Review Letters, 69, 1193.Google Scholar
Sahlin, P., Soderberg, B., & Jonsson, H. (2009). Regulated transport as a mechanism for pattern generation: capabilities for phyllotaxis and beyond. [In eng]. Journal of Theoretical Biology, 258(1), 6070. https://doi.org/10.1016/j.jtbi.2009.01.019.CrossRefGoogle ScholarPubMed
Sánchez-Corrales, Y. E., Hartley, M., Van Rooij, J., Marée, A. FM, & Grieneisen, V. A. (2018). Morphometrics of complex cell shapes: lobe contribution elliptic fourier analysis (loco-efa). Development, 145(6), dev156778. https://doi.org/10.1242/dev.156778.CrossRefGoogle ScholarPubMed
Segel, L A., & Jackson, J. L. (1972). Dissipative structure: an explanation and an ecological example[in en]. Journal of Theoretical Biology (England), 37(3) 545559. https://doi.org/10.1016/0022-5193(72)90090-2.CrossRefGoogle Scholar
Siero, E. (2020). Resolving soil and surface water flux as drivers of pattern formation in turing models of dryland vegetation: a unified approach. Physica D: Nonlinear Phenomena, 414, 132695. https://doi.org/10.1016/j.physd.2020.132695.CrossRefGoogle Scholar
Siero, E., Doelman, A., Eppinga, M. B., Rademacher, J. D. M., Rietkerk, M., & Siteur, K. (2015). Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 036411. https://doi.org/10.1063/1.4914450.Google Scholar
Smith, R. S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., & Prusinkiewicz, P. (2006). A plausible model of phyllotaxis. [In eng]. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1301–6. https://doi.org/10.1073/pnas.0510457103.CrossRefGoogle ScholarPubMed
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 3772. https://doi.org/10.2307/j.ctv2z0vtrq.20.Google Scholar
Turing, A. M. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1–2), 153197. https://doi.org/10.2307/j.ctv2z0vtrq.20.CrossRefGoogle ScholarPubMed
Wardlaw, C. W. (1953). A commentary on turing’s diffusion-reaction theory of morphogenesis. The New Phytologist 52(1), 4047. https://doi.org/10.1111/j.1469-8137.1953.tb05203.x.CrossRefGoogle Scholar
Watson, J. D., and Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171(4356) 737738. https://doi.org/10.1038/171737a0.CrossRefGoogle ScholarPubMed
White, K. A. J. & Gilligan, C. A. (1998). Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1368), 543557. https://doi.org/10.1098/rstb.1998.0226.CrossRefGoogle Scholar
Wilkins, M. H. F., Stokes, A. R., & Wilson, H. R. (1953). Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature, 171(4356), 738740. https://doi.org/10.1038/171738a0.CrossRefGoogle ScholarPubMed
Zaikin, A. N., & Zhabotinsky, A. M. (1970). Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225(5232), 535537. https://doi.org/10.1038/225535b0.CrossRefGoogle ScholarPubMed
Figure 0

Figure 1. Annual citations to Turing’s paper ((Turing, 1952) and (Turing, 1990) combined) according to Web of Science. Citations to individual editions in thin lines, with shades of blue as indicated in the graph. Thick line shows the sum. Data retrieved on 23 August 2024.

Figure 1

Figure 2. Different forms of the Turing system illustrated conceptually. Stars indicate different (active) substances, circles indicate substrates (e.g., inactive forms) of the same coloured substances. Graphs sketch the 1D concentration profiles in steady state. Line styles and colours are the same as the borders of the corresponding substances. Note that the inhibitor/depleted substrate profiles are shallower, due to their relatively higher diffusion coefficients. Cyan graphs for the mutual activation scenario (c) are shifted a little for visualization purposes.

Figure 2

Figure 3. Examples of likely Turing patterns in plant biology (a–c). Cartoons with stars and circles refer to Figure 2. (a) ROP proteins govern many cases of local cell growth and other local cell wall modifications, including the puzzle shape of many leaf epidermal cells (Deinum & Jacobs, 2024). In this particular example, multiple ROPs occur in a mutually inhibiting interaction. Each ROP functions via a depleted substrate mechanism, in which the active form diffuses slower than the inactive form (Deinum & Jacobs, 2024). (b) Patterning of trichoblasts (that will produce root hairs or trichomes) and atrichoblast (that will not) in epidermal tissues is goverened by multiple transcription factors, here a simplified network for trichomes is shown (Balkunde et al., 2020). IC: inhibitor-complex; AC: activator-complex; other acronyms refer to individual transcription factors. The ones functioning as ‘inhibitor’ (TRY and CPC) are smaller and can move via plasmodesmata to neighbouring cells (Grebe, 2012). Both activator-inhibitor and substrate depletion models exist for the system. For best explanation of the patterning phenotype of the ttg1-9 mutant, a combination of activator-inhibitor and substrate (TTG1)-depletion elements is required (Balkunde et al., 2020). In drylands, vegetation and bare soil occur in patterns like spots or stripes (Deblauwe et al., 2008) mediated via local water availability. Water preferentially infiltrates near vegetation, resulting in a net flow from bare to vegetated areas (Ludwig et al., 2005) along the depicted transect. (d) Counterexample: Although lateral roots are regularly spaced along the main root (arrows), it is unlikely that their spacing is controlled by a Turing-like mechanism (van den Berg et al., 2021).

Author comment: The Turing heritage for plant biology: all spots and stripes? — R0/PR1

Comments

Dear editor,

We are pleased to submit our classics paper about Alan Turing, the chemical basis of morphogenesis, as commissioned by Kirsten ten Tusscher. We are discussing the impact of Alan Turing’s idea based on three examples from plant science at different scales that are likely Turing systems and one counterexample.

Kind regards,

Eva Deinum

Review: The Turing heritage for plant biology: all spots and stripes? — R0/PR2

Conflict of interest statement

Reviewer declares none.

Comments

In this manuscript, Siero et al has described the impact of the classic paper of Alan Turing on plant research. Recently some reviews has been published highlighting the impact of this paper on research but more focussing on the mathematical side of it. Therefore, this plant focus of this review is refreshing and is an interesting read for everyone in the plant research community. The examples used to illustrate different Turing pattern observed in plants are well chosen and I appreciate that they represent different levels of magnitude (cellular, tissue and field level). The inclusion of the counter example, is a well needed caveat that not every pattern is and should be resulted from a Turing pattern.

I have only a few comments that I envision to be beneficial for broaden the appeal of this paper to an bigger audience.

Major comments:

- I miss an overview figure that illustrates the examples used in the review and their mechanism. If figure number is limited, please then combine Figure 1 and 2 into one.

Minor comments:

- To extend to interest of this paper to non-mathematical researchers. I would suggest to add a glossary of used terms that might not be common knowledge. For example, terms like advection could use a definition.

- Bottom two panels of Figure 2 has been referenced twice in two adjacent sentences, please remove of of these. Additional, I would suggest to add panel numbering to figure 2. For example Figure 2A, to make it easier to direct the readers to the correct panel.

- In the first example of Turing patterns with the ROP proteins. I would prefer the authors to start with describing the Turing patterns created by these proteins (Cell wall and lobes in epidermis) before explaining the mechanism that creates the Turing components. This would endorse people to think more about their own research topic in terms of Turing patterns, which should be the goal of this review.

Review: The Turing heritage for plant biology: all spots and stripes? — R0/PR3

Conflict of interest statement

Reviewer declares none.

Comments

The manuscript by Siero and Denium on the Turing heritage for plant biology nicely and concisely reviews some aspects of the Turing patterning and its relation to patterning in plants.

Please find below some minor points to be considered, which I hope the authors can successfully address without too much extra work:

List of minor points:

-Several claims do not have a supporting reference, which it is very important in a review. I would ask the authors to carefully check this point. For instance,

* Historical interpretations of Turing success in page 1 – what historical analyses support the statement referring to the two events not helping with Turing’s ideas?

* Page 2: Statements regarding the insensitivity of the critical wavelength with respect to diffusion coefficients, and when referring to l_c approx. (D_1 D_2)^1/4

* Page 2, the two bullet points referring to advection.

* Page 2, last sentence before example 1, referring to the existence of stationary and oscillatory patterns

*Page 2, when introducing the ROP proteins

-Some clarity could be improved, for instance:

*Statement in page 2 “The self-activation can result from a constant per capita loss rate and a per capita growth rate that increases with size, referred to as facilitation “; the per capita also appears confusing to me, the readership is thinking in terms of concentrations, so does it refer to ‘per molecule’? what does it mean ‘with size’ here?

*Statement in page 2 “Seemingly, this is at odds with the perception that with low diffusion coefficients, the diffusion length is small, but in isotropic systems, there is no need for individual molecules to travel from one side to the other. “

*In example 1 (pages 2 and 3); ‘multiple clusters’ would be equivalent to ‘different concentration maxima’, is that right? Also, ‘pattern coexistence’ refers to ‘cluster coexistence’, i.e. having multiple maxima? Could you briefly explain what ‘cluster level bookkeeping’ mean and involve?

*Sentence in page 2 “Mathematically, there is no significant distinction between inhibitor and depleted substrate, because one can easily transform one form into the other”. Although I see the analogy from the authors, I am afraid that saying ‘Mathematically’ (although you say ‘no significant distinction’) might be going too far and perhaps might lead to confusion, given that this analogy, in my understanding, this is not strictly ‘Mathematically’ true – but I might be wrong. Please revise this, and consider to take out the word ‘Mathematically’.

*Sentence in page 3 “This gives the required basis for a difference in diffusion coefficients”. I guess this refers to the fact of non-mobile factors relaxes the need of having 2 diffusible species with different diffusions, right? Consider to rephrase and be more explicit, and I would suggest cite Marcon et al 2016 eLife.

*Sentence in page 3 “Having advection, spatial pattern formation is possible without different diffusion coefficients.” – but strictly speaking, the different diffusion coefficients are just necessary for two species, is it right? (see Marcon et al 2016 eLife)

*Page 3, in example 2; consider to rephrase the sentence ‘This gives the required basis for a difference in diffusion coefficients.’, given this would be just a requirement for 2-component systems, while some of these models are not 2-component systems anymore

* Sentence in page 4, “ is impossible to scale up these patterns by changing the key proteins involved for faster diffusing ones.” – is scaling up referring to increasing the pattern wavelength?

-Sentence in page 2 “Other factors can also have a big impact on the pattern wavelength. “, I would take out ‘also’, given the previous sentence refers to a factor being quite insensitive to the wavelength.

- Given the advection terms are often mentioned during the text, I would suggest the authors to consider to mention at some point whether the PIN-mediated auxin transport could be also understood as an advective term.

-In Figure 2, there is a typo: “Substate” should be “Substrate”

-Page 3 instead of “Turings paper” should be “Turing’s paper”

Recommendation: The Turing heritage for plant biology: all spots and stripes? — R0/PR4

Comments

Dear Dr Siero and Dr Deinum,

thank you for submitting such an interesting Classics on Turing patterns. I learned a lot while reading it. The two reviewers have a few points mainly to increase the readability of the text.

best wishes,

Ari Pekka

Decision: The Turing heritage for plant biology: all spots and stripes? — R0/PR5

Comments

No accompanying comment.

Author comment: The Turing heritage for plant biology: all spots and stripes? — R1/PR6

Comments

Dear Editor,

We would like to resubmit our classics manuscript titled “The Turing heritage for plant biology: all spots and stripes?” following the encouraging review reports. We describe in a separate document how we have dealt with their suggestions. In the process, we have added an additional figure to the manuscript. This was discussed with and approved by Olivier Hamant and Alison Paskins.

Kind regards,

Eva Deinum

Review: The Turing heritage for plant biology: all spots and stripes? — R1/PR7

Conflict of interest statement

Reviewer declares none.

Comments

I would like to thank the authors for the changes they provided to the manuscript to address my comments. I feel like that the manuscript has been greatly improved. Therefore, I have no additional comments and would support the acceptance of the manuscript.

Review: The Turing heritage for plant biology: all spots and stripes? — R1/PR8

Conflict of interest statement

"None"

Comments

I would like to thank the authors for the different improvements. Although the manuscript reads better now, I still have a few additional minor suggestions:

- Thanks for the clarification about the rescaling and non-dimensional analysis when referring to l_c approx. (D_1 D_2)^1/4 ; yet, I am wondering whether this relates to a particular or general case or not, and therefore a reference or more clarification would help. E.g., just by dimensional analysis, perhaps one could also argue that l_c approx. (D_2^2/D_1)^1/2, and therefore the conclusions from that paragraph would be different, wouldn’t be?

- In caption of Fig. 2 referring to panel B, it reads like trichomes also come from trichoblasts, which I understand it is not the case. Please rephrase.

- I appreciate the inclusion of Figure 3, which illustrates the different examples discussed within the review. Figure 3 appearing within the text shows that panels A and C are intermingled, which makes panel C difficult to understand. I would suggest to reduce the size of panel A (but this issue is solved when Figure 3 is provided as a separate file and not within the text). I like panel C, but at the same time it looks very artistic, and might be difficult to interpret for certain readers. I would suggest to adapt it and/or make sure the caption is clearly related to it and facilitates more its understanding.

- Page 2, right before the basic concept subheading. I would rephrase the sentence “For a basic mathematical analysis we refer to (…)” as “ For a basic mathematical analysis on XYZ we refer to (…)”

-Page 2, right after auto-catalysis or facilitation I would add “(see glossary)”.

-Page 2, I still do not understand the meaning of the following sentence: “Note, however, that in isotropic systems, there is no need for individual molecules to travel from one side to the other.”, consider to clarify it.

-Page 2 Consider to rewrite the last sentence before Example 1 into “but interact with the non-mobile components to give different effective diffusion coefficients, as in Lengyel and Epstein (1992).”

-Page 5, the new sentence “Tools exist to help to find…” seems to break the flow of the paragraph and could be misinterpreted, so I suggest to remove it or move it elsewhere. Otherwise, given the previous sentence discusses the cellularity effect, one might think that larger reaction diffusion systems could emulate better the effect of the cellular nature of tissues, which is not necessarily the case.

-In the glossary, it appears a sentence defining Isotropy within the advection definition, which looks awkward – either rephrase the sentence and integrate it in the advection definition, or put it aside as a new definition.

-Note that when citing some panels in the text, a comma should be in-between their labels (i.e. you wrote AB and CD in the text, instead of A, B and C, D, respectively.

-Please revise the references in the reference list at the end of the manuscript (note some of them have twice their website, etc.).

Recommendation: The Turing heritage for plant biology: all spots and stripes? — R1/PR9

Comments

Dear Eva,

as you can see, one of the two reviewers still have a few minor issues to handle. Please, address the points you see relevant, and I will proceed forward with the manuscript.

with best wishes,

Ari Pekka

Decision: The Turing heritage for plant biology: all spots and stripes? — R1/PR10

Comments

No accompanying comment.

Author comment: The Turing heritage for plant biology: all spots and stripes? — R2/PR11

Comments

Dear Ari Pekka,

Please see in the attached document how we have responded to the minor suggestions of reviewer 2. I think this made some real improvements to the manuscript as well as some cosmetic changes. As the number of changes is so small, I have quoted all new text in the document below (responses in red) and have not produced a version with tracked changes. Please let me know if this is a problem.

Kind regards,

Eva Deinum

Recommendation: The Turing heritage for plant biology: all spots and stripes? — R2/PR12

Comments

Dear Eva,

than you for submitting the revised manuscript. Everything appears to be in order, so I am happy to accept the manuscript.

with best wishes,

Ari Pekka

Decision: The Turing heritage for plant biology: all spots and stripes? — R2/PR13

Comments

No accompanying comment.