Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T01:59:48.387Z Has data issue: false hasContentIssue false

Toward a neurophysiological foundation for altered states of consciousness

Published online by Cambridge University Press:  06 April 2018

Shadab Tabatabaeian
Affiliation:
University of California, Merced, CA [email protected]@ucmerced.eduhttp://faculty.ucmerced.edu/cjennings3/
Carolyn Dicey Jennings
Affiliation:
University of California, Merced, CA [email protected]@ucmerced.eduhttp://faculty.ucmerced.edu/cjennings3/

Abstract

Singh's cultural evolutionary theory posits that methods of inducing shamanic altered states of consciousness differ, resulting in profoundly different cognitive states. We argue that, despite different methods of induction, altered states of consciousness share neurophysiological features and cause shared cognitive and behavioral effects. This common foundation enables further cross-cultural comparison of shamanic activities that is currently left out of Singh's theory.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batty, M. J., Bonnington, S., Tang, B. K., Hawken, M. B. & Gruzelier, J. H. (2006) Relaxation strategies and enhancement of hypnotic susceptibility: EEG neurofeedback, progressive muscle relaxation and self-hypnosis. Brain Research Bulletin 71(1–3):):8390.Google Scholar
Benedek, M., Schickel, R. J., Jauk, E., Fink, A. & Neubauer, A. C. (2014) Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56:393400.CrossRefGoogle ScholarPubMed
Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., Moonen, G., Hustinx, R., Maquet, P. && Laureys, S. (2008) Intrinsic brain activity in altered states of consciousness. Annals of the New York Academy of Sciences 1129(1):119–29.Google Scholar
Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J. & Kober, H. (2011) Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences USA 108(50):20254–59.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. (2008) The brain's default network. Annals of the New York Academy of Sciences 1124(1):138.Google Scholar
Cahn, B. R. & Polich, J. (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin 132(2):180211. doi:10.1037/0033-2909.132.2.180.Google Scholar
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K. & Hobden, P. (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences USA 109(6):2138–43.Google Scholar
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., Tagliazucchi, E., Schenberg, E. E., Nest, T., Orban, C., Leech, R., Williams, L. T., Williams, T. M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M. I., Nichols, D., Hellyer, P. J., Hobden, P., Evans, J., Singh, K. D., Wise, R. G., Curran, H. V., Feilding, A. & Nutt, D. J. (2016) Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences USA 113(17):4853–58. doi:10.1073/pnas.1518377113.CrossRefGoogle ScholarPubMed
Carter, O. L., Burr, D. C., Pettigrew, J. D., Wallis, G. M., Hasler, F. & Vollenweider, F. X. (2005) Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. Journal of Cognitive Neuroscience 17(10):1497–508.Google Scholar
Castillo, R. J. (1990) Depersonalization and meditation. Psychiatry 53(2):158–68.Google Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences USA 106(21):8719–24.Google Scholar
Cole, M. W., Repovš, G. & Anticevic, A. (2014) The frontoparietal control system: A central role in mental health. The Neuroscientist 20(6):652–64.CrossRefGoogle ScholarPubMed
Cole, M. W. & Schneider, W. (2007) The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage 37(1):343–60.Google Scholar
Dahl, C. J., Lutz, A. & Davidson, R. J. (2015) Reconstructing and deconstructing the self: Cognitive mechanisms in meditation practice. Trends in Cognitive Sciences 19(9):515–23.Google Scholar
Danielson, N. B., Guo, J. N. & Blumenfeld, H. (2011) The default mode network and altered consciousness in epilepsy. Behavioural Neurology 24(1):5565.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003) Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition 12(2):231–56.CrossRefGoogle ScholarPubMed
Forgays, D. G. & Forgays, D. K. (1992) Creativity enhancement through flotation isolation. Journal of Environmental Psychology 12(4):329–35.Google Scholar
Fox, K. C., Nijeboer, S., Solomonova, E., Domhoff, G. W. & Christoff, K. (2013) Dreaming as mind wandering: Evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience 7:118.Google Scholar
Geyer, M. A. & Vollenweider, F. X. (2008) Serotonin research: Contributions to understanding psychoses. Trends in Pharmacological Sciences 29(9):445–53.CrossRefGoogle ScholarPubMed
Gingras, B., Pohler, G. & Fitch, W. T. (2014) Exploring shamanic journeying: Repetitive drumming with shamanic instructions induces specific subjective experiences but no larger cortisol decrease than instrumental meditation music. PLoS ONE 9(7):e102103.CrossRefGoogle ScholarPubMed
Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. (2012) Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59(1):750–60.Google Scholar
Hayashi, M., Morikawa, T. & Hori, T. (1992) EEG alpha activity and hallucinatory experience during sensory deprivation. Perceptual and Motor Skills 75(2):403–12.CrossRefGoogle ScholarPubMed
Hove, M. J., Stelzer, J., Nierhaus, T., Thiel, S. D., Gundlach, C., Margulies, D. S., Van Dijk, K., Turner, R., Keller, P. E. & Merker, B. (2016) Brain network reconfiguration and perceptual decoupling during an absorptive state of consciousness. Cerebral Corte 26:3116–24. doi:10.1093/cercor/bhv137.Google Scholar
Iwata, K., Nakao, M., Yamamoto, M. & Kimura, M. (2001) Quantitative characteristics of alpha and theta EEG activities during sensory deprivation. Psychiatry and Clinical Neurosciences 55(3): 191–92.Google Scholar
Kjellgren, A. (2003) The experience of flotation – REST (restricted environmental stimulation technique): Consciousness, creativity, subjective stress, and pain. University Press.Google Scholar
Kjellgren, A., Lyden, F. & Norlander, T. (2008) Sensory isolation in flotation tanks: Altered states of consciousness and effects on well-being. The Qualitative Report 13(4):636–56.Google Scholar
Lutz, A., Slagter, H. A., Dunne, J. D. & Davidson, R. J. (2008) Attention regulation and monitoring in meditation. Trends in Cognitive Sciences 12(4):163–69.Google Scholar
Mason, O. J. & Brady, F. (2009) The psychotomimetic effects of short-term sensory deprivation. The Journal of Nervous and Mental Disease 197(10):783–85.Google Scholar
Menon, V. & Uddin, L. Q. (2010) Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function 214:655–67.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., Sessa, B., Papadopoulos, A., Bolstridge, M., Singh, K. D., Feilding, A., Friston, K. J. & Nutt, D. J. (2013) Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience 33:15171–83. doi:10.1523/JNEUROSCI.2063-13.2013.Google Scholar
Neher, A. (1962) A physiological explanation of unusual behavior in ceremonies involving drums. Human Biology 34(2):151–60.Google Scholar
Oohashi, T., Kawai, N., Honda, M., Nakamura, S., Morimoto, M., Nishina, E. & Maekawa, T. (2002) Electroencephalographic measurement of possession trance in the field. Clinical Neurophysiology 113(3):435–45.Google Scholar
Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., Santos, A. C., Crippa, J. A. S., Hallak, J. E., Ribeiro, S. & de Araujo, D. B. (2015) The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS ONE 10(2):e0118143.Google Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences USA 98(2):676–82.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L. & Greicius, M. D. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience 27(9):2349–56.Google Scholar
Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek, M. D., Carlson, J. M. & Schooler, J. W. (2011) Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE 6(3):e18298. doi:10.1371/journal.pone.0018298.Google Scholar
Smallwood, J., McSpadden, M. & Schooler, J. W. (2007) The lights are on but no one's home: Meta–awareness and the decoupling of attention when the mind wanders. Psychonomic Bulletin and Review 14(3):527–33.Google Scholar
Speth, J., Speth, C., Kaelen, M., Schloerscheidt, A. M., Feilding, A., Nutt, D. J. & Carhart-Harris, R. L. (2016) Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. Journal of Psychopharmacology 30(4): 344–53.Google Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J., Gilmore, A. W. & Schacter, D. L. (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 53:303–17.Google Scholar
Suedfeld, P. (1980) Restricted environmental stimulation: Research and clinical applications. Wiley.Google Scholar
Suedfeld, P. & Eich, E. (1995) Autobiographical memory and affect under conditions of reduced environmental stimulation. Journal of Environmental Psychology 15:321–26.CrossRefGoogle Scholar
Tagliazucchi, E., Roseman, L., Kaelen, M., Orban, C., Muthukumaraswamy, S. D., Murphy, K., Laufs, H., Leech, R., McGonigle, J., Crossley, N., Bullmore, E., Williams, T., Bolstridge, M., Feilding, A., Nutt, D. J. & Carhart-Harris, R. (2016) Increased global functional connectivity correlates with LSD-induced ego dissolution. Current Biology 26(8):1043–50. doi:10.1016/j.cub.2016.02.010.Google Scholar
Takahashi, T., Murata, T., Hamada, T., Omori, M., Kosaka, H., Kikuchi, M., Yoshida, H. && Wada, Y. (2005) Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. International Journal of Psychophysiology 55(2):199207.Google Scholar
Vaitl, D., Birbaumer, N., Gruzelier, J., Jamieson, G., Kotchoubey, B., Kübler, A., Lehmann, D., Miltner, W. H. R., Ott, U., Pütz, P., Sammer, G., Strauch, I., Strehl, U., Wackermann, J. & Weiss, T. (2005) Psychobiology of altered states of consciousness. Psychological Bulletin 131:98127. doi:10.1037/0033-2909.131.1.98.Google Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology 100(6):3328–42.Google Scholar
Zuckerman, M. & Cohen, N. (1964) Sources of reports of visual and auditory sensations in perceptual-isolation experiments. Psychological Bulletin 62(1):120.CrossRefGoogle ScholarPubMed