Article contents
Generalization of the resource-rationality principle to neural control of goal-directed movements
Published online by Cambridge University Press: 11 March 2020
Abstract
We review evidence that the resource-rationality principle generalizes to human movement control. Optimization of the use of limited neurocomputational resources is described by the inclusion of the “neurocomputational cost” of sensory information processing and decision making in the optimality criterion of movement control. A resulting tendency to decrease this cost can account for various phenomena observed during goal-directed movements.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2020
References
- 3
- Cited by
Target article
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
Related commentaries (25)
Another claim for cognitive history
Beginning with biology: “Aspects of cognition” exist in the service of the brain's overall function as a resource-regulator
Can resources save rationality? “Anti-Bayesian” updating in cognition and perception
Cognitively bounded rational analyses and the crucial role of theories of subjective utility
Computational limits don't fully explain human cognitive limitations
Generalization of the resource-rationality principle to neural control of goal-directed movements
Heuristics and the naturalistic fallacy
Holistic resource-rational analysis
Multiple conceptions of resource rationality
Opportunities and challenges integrating resource-rational analysis with developmental perspectives
Opportunities for emotion and mental health research in the resource-rationality framework
Optimal, resource-rational or sub-optimal? Insights from cognitive development
Representing utility and deploying the body
Resource-rational analysis versus resource-rational humans
Resource-rationality and dynamic coupling of brains and social environments
Resource-rationality as a normative standard of human rationality
Resource-rationality beyond individual minds: the case of interactive language use
Sampling as a resource-rational constraint
The biology of emotion is missing
The evolutionary foundations of resource-rational analysis
The importance of constraints on constraints
Towards a quantum-like cognitive architecture for decision-making
Uncovering cognitive constraints is the bottleneck in resource-rational analysis
What are the appropriate axioms of rationality for reasoning under uncertainty with resource-constrained systems?
What is the purpose of cognition?
Author response
Advancing rational analysis to the algorithmic level