Hostname: page-component-6587cd75c8-mppm8 Total loading time: 0 Render date: 2025-04-23T20:40:31.863Z Has data issue: false hasContentIssue false

Internal waves and Rayleigh–Taylor instability in magnetized compressible strongly coupled dusty plasmas

Published online by Cambridge University Press:  02 October 2024

Deepak Kumar
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
Ram Prasad Prajapati*
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
*
Email address for correspondence: [email protected]

Abstract

This paper investigates the influence of compressibility on the internal wave modes and the density gradient-driven Rayleigh–Taylor (R–T) instability in magnetized strongly coupled dusty plasmas. The dusty magnetohydrodynamic model is formulated for compressible fluids, accounting for the effects of weakly coupled electrons/ions and strongly coupled dust particles under the influence of the gravitational field. The effect of the magnetic field on the dust dynamics has been incorporated through the magnetic force on the electrons and ions in quasineutral dusty plasmas. A dispersion relation of the R–T instability has been derived which has been modified because of the compressibility effect, dust acoustic wave speed and viscoelastic coefficients. The shear Alfvén and compressional viscoelastic wave modes become coupled in the dispersion characteristics. The modified R–T instability criterion is derived in terms of the Alfvén speed, viscoelastic effects and dust grain parameters. The graphical illustrations show that the growth rate of R–T instability has been suppressed due to compressibility, viscoelastic coefficients and dust acoustic speed. The results are useful to discuss the development of R–T instability in magnetized astrophysical dusty plasmas.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avinash, K. & Sen, A. 2015 Rayleigh–Taylor instability in dusty plasma experiment. Phys. Plasmas 22, 083707.CrossRefGoogle Scholar
Cabot, W.H. & Cook, A.W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for Type-Ia supernovae. Nat. Phys. 2, 562.CrossRefGoogle Scholar
D'Angelo, N. 1993 The Rayleigh–Taylor instability in dusty plasmas. Planet. Space Sci. 41 (6), 469.CrossRefGoogle Scholar
Das, A. & Kaw, P. 2014 Suppression of Rayleigh–Taylor instability in strongly coupled plasmas. Phys. Plasmas 21, 062102.CrossRefGoogle Scholar
Dharodi, V.S. & Das, A. 2021 A numerical study of gravity-driven instability in strongly coupled dusty plasma. Part 1. Rayleigh–Taylor instability and buoyancy-driven instability. J. Plasma Phys. 87, 905870216.CrossRefGoogle Scholar
Dolai, B. & Prajapati, R.P. 2017 Rayleigh–Taylor instability and internal waves in strongly coupled quantum plasma. Phys. Plasmas 24 (11), 112101.CrossRefGoogle Scholar
Dolai, B. & Prajapati, R.P. 2018 The rotating Rayleigh–Taylor instability in a strongly coupled dusty plasma. Phys. Plasmas 25 (8), 083708.CrossRefGoogle Scholar
Duffel, P.C. & Kasen, D. 2017 Rayleigh–Taylor instability in interacting supernovae: implications for synchrotron magnetic fields. Astrophys. J. 842 (1), 18.CrossRefGoogle Scholar
Fraschetti, F., Teyssier, R., Ballet, J. & Decourchelle, A. 2010 Simulation of the growth of the 3D Rayleigh–Taylor instability in supernova remnants using an expanding reference frame. Astron. Astrophys. 515, A104.CrossRefGoogle Scholar
Garai, S. 2016 Stability characteristics of Rayleigh–Taylor instability in a strongly coupled incompressible dust fluid with finite shear flow. Phys. Plasmas 23 (11), 113706.CrossRefGoogle Scholar
Garai, S., Banerjee, D., Janaki, M.S. & Chakrabarti, N. 2014 Velocity shear effect on the longitudinal wave in a strongly coupled dusty plasma. Astrophys. Space Sci. 349, 789.CrossRefGoogle Scholar
Hillier, A. 2018 The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 1.CrossRefGoogle Scholar
Jun, B.I. 1998 Interaction of a pulsar wind with the expanding supernova remnant. Astrophys. J. 499, 282.CrossRefGoogle Scholar
Kaw, P.K. & Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5 (10), 3552.CrossRefGoogle Scholar
Lu, H.L. & Qiu, X.M. 2011 The internal wave and Rayleigh–Taylor instability in compressible quantum plasmas. Phys. Plasmas 18, 104508.CrossRefGoogle Scholar
Pacha, K.A. & Merlino, R.L. 2020 Further developments on observations of the Taylor instability in a dusty plasma. Phys. Plasmas 27, 084501.CrossRefGoogle Scholar
Papadopoulos, D.B. & Contopoulos, I. 2018 The magnetic Rayleigh–Taylor instability around astrophysical black holes. Mon. Not. R. Astron. Soc. 483 (2), 2325.CrossRefGoogle Scholar
Porth, O., Komissarov, S.S. & Keppens, R. 2014 Rayleigh–Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 443 (1), 547.CrossRefGoogle Scholar
Rao, N.N., Shukla, P.K. & Yu, M.Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38 (4), 543.CrossRefGoogle Scholar
Rosenberg, M. 2000 Waves and instabilities in weakly and strongly correlated dusty plasmas. In APS Meeting Abstracts, vol. 42.Google Scholar
Sen, S., Fukuyama, A. & Honary, F. 2010 Rayleigh–Taylor instability in a dusty plasma. J. Atmos. Solar Terr. Phys. 72, 938.CrossRefGoogle Scholar
Sun, Y.B., Gou, J.N., Cao, C.Y., Wang, C. & Zeng, R.H. 2023 Rayleigh–Taylor instability in magnetohydrodynamics with finite resistivity in a horizontal magnetic field. Phys. Rev. E 108, 065208.CrossRefGoogle Scholar
Veeresha, B.M., Das, A. & Sen, A. 2005 Rayleigh–Taylor instability driven nonlinear vortices in dusty plasmas. Phys. Plasmas 12, 044506.CrossRefGoogle Scholar
Wang, C.Y. 2011 Rayleigh–Taylor instabilities in Type Ia supernova remnants undergoing cosmic ray particle acceleration – low adiabatic index solutions. Mon. Not. R. Astron. Soc. 415, 83.CrossRefGoogle Scholar
Wani, R., Mir, A., Batool, F. & Tiwari, S.K. 2022 Rayleigh–Taylor instability in strongly coupled plasma. Sci. Rep. 12, 11557.CrossRefGoogle ScholarPubMed
Zhang, W. & Duan, W. 2024 Rayleigh–Taylor instability in an interface of a dusty plasma. Braz. J. Phys. 54, 2.CrossRefGoogle Scholar