We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For certain product varieties, Murre's conjecture on Chow groups is investigated. More precisely, let k be an algebraically closed field, X be a smooth projective variety over k and C be a smooth projective irreducible curve over k with function field K. Then we prove that if X (resp. XK) satisfies Murre's conjectures (A) and (B) for a set of Chow-Künneth projectors {, 0 ≤ i ≤ 2dim X} of X (resp. for {()K} of XK) and if for any j, , then the product variety X × C also satisfies Murre's conjectures (A) and (B). As consequences, it is proved that if C is a curve and X is an elliptic modular threefold over k (an algebraically closed field of characteristic 0) or an abelian variety of dimension 3, then Murre's conjecture (B) is true for the fourfold X × C.
We introduce a refinement of the Bloch-Wigner complex of a field F. This refinement is complex of modules over the multiplicative group of the field. Instead of computing K2(F) and Kind3(F) - as the classical Bloch-Wigner complex does - it calculates the second and third integral homology of SL2(F). On passing to F× -coinvariants we recover the classical Bloch-Wigner complex. We include the case of finite fields throughout the article.
We summarise the construction of geometric cycles and their use in describing the Kasparov K-homology of a CW-complex X. When Kasparov K-homology is twisted by a degree three element of the Čech cohomology of X then there is a corresponding construction of twisted geometric cycles for the case where X is a smooth manifold however the method that was employed does not apply in the case of CW-complexes. In this article we propose a new approach to the construction of twisted geometric cycles for CW-complexes motivated by the study of D-branes in string theory.
Let be a generalized based category (see definition 1.2). In this paper, we construct a cohomology theory in the category of contravariant functors: where R is a commutative ring with identity, which generalizes Bredon cohomology involving finite, profinite or discrete groups.
We also study higher K-theory of the category of finitely generated projective objects in and the category of finitely generated objects in and obtain some finiteness and other results.
Given a number field F and a prime number p; let Fn denote the cyclotomic extension with [Fn : F] = pn; and let denote its ring of integers. We establish an analogue of the classical Iwasawa theorem for the orders of K2i (){p}.
Exact sequences in algebraic K-theory contain a lot of information. Here it is shown that by using K-theory exact sequences one can easily derive Bass’ description [1] of the SK1 of an ideal in a Dedekind domain in terms of relative reciprocities.
Assuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D2p; p an odd prime, or the alternating group A4. We include numerical results illustrating these formulas.
For an odd prime p we prove a Riemann-Hurwitz type formula for odd eigenspaces of the standard Iwasawa modules over F(μp∞), the field obtained from a totally real number field F by adjoining all p-power roots of unity. We use a new approach based on the relationship between eigenspaces and étale cohomology groups over the cyclotomic ℤp-extension F∞ of F. The systematic use of étale cohomology greatly simplifies the proof and allows to generalize the classical result about the minus-eigenspace to all odd eigenspaces.
Let X be a smooth, proper and geometrically irreducible curve X defined over a number field F and let χ be a regular and proper model of X over OF,Sl. In this paper we address the problem of detecting the linear dependence over ℤl of elements in the étale K-theory of χ. To be more specific, let P ∊ Ket2n(χ) and let ⋀̂ ⊂ Ket2n(χ) be a ℤl-submodule. Let rυ: Ket2n(χ) → Ket2n(χυ) be the reduction map for υ ∉ Sl. We prove, under some conditions on X, that if rυ() ∈ rυ (⋀̂) for almost all υ of then ∈ ⋀̂ + Ket2n(χ)tor.
As an application of our papers in hermitian K-theory, in favourable cases we prove the periodicity of hermitian K-groups with a shorter period than previously obtained. We also compute the homology and cohomology with field coeffcients of infinite orthogonal and symplectic groups of specific rings of integers in a number field.