Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T02:30:51.626Z Has data issue: false hasContentIssue false

Reducing Salmonella transfer during industrial poultry meat production

Published online by Cambridge University Press:  18 September 2007

R. Fries
Affiliation:
Institute of Meat Hygiene and Technology, Free University of Berlin, Brümmerstr. 10, 14195 Berlin, Germany, e-mail: [email protected]
Get access

Abstract

From primary production and on through the whole processing line, the poultry house microflora will be transferred into the processing plant, and further on in the process, onto exterior parts of the birds as well in their gut microflora. This is particularly true for Salmonella. In this paper, the major stages of poultry processing are considered with regard to the potential spread of Salmonella. Most of the data referred to in this review applies to broiler chickens.

Cross contamination occurs especially during scalding, defeathering, head pulling, evisceration and chilling. The poultry meat processing line does not have any killing capability for Salmonella. At present, effective barriers that might be able to control Salmonella do not exist. It would be useful to develop more techniques and procedures than are presently available.

Several other options for intervention to control Salmonella already exist. Although generally known, these have not yet been incorporated into the production sequence. They include the implementation of other processing actions such as flaming; changes of machinery design for example in scalding tanks and transport containers. It would also be helpful to base operational designs of machinery for scalding and crate washing more on scientific data such as time-temperature-relations in calculation of Salmonella death rates.

However, none of these actions alone would be able to solve the problem, an integrated approach is needed.

More data on flock Salmonella status is needed at critical stages during broiler growout. Also requirements for special products such as minimally processed meat must be examined, and more quantitative data are needed to calculate time-temperature relations more precisely.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, V.M., Corry, J.E.L., Burton, C.H., Whyte, R.T. and Mead, G.C. (2000) Hygiene Aspects of Modem Poultry Chilling. Int. J. Food Microbiology 58: 3948.CrossRefGoogle Scholar
Anonymus (1997) Microbial Testing. Poultry International 36, No. 11 Supplement. Poultry Processing Worldwide.Google Scholar
Bailey, J.S., Lyon, B.G., Lyon, C.E. and Windham, W.R. (2000) The Microbiological Profile of Chilled and Frozen Chicken. J. Food Prot. 63: 12281230.CrossRefGoogle ScholarPubMed
Bailey, J.S., Stern, N.J., Fedorka-Cray, P., Craven, S.E., Cox, N.A., Cosby, D.E., Ladely, S. and Musgrove, M.T. (2001) Sources and Movement of Salmonella through Integrated Poultry Operations: a Multistage Epidemiological Investigation. J. Food Prot. 64: 16901697.CrossRefGoogle Scholar
Brant, A.W., Goble, J.W., Hamann, J.A., Wabeck, C.J. and Walters, R.E. (1982) Guidelines for Establishing and Operating Broiler Processing Plants. U.S. Department of Agriculture, Agriculture Handbook No. 581, p. 25.Google Scholar
Cason, J.A., Whittemore, A.D. and Shackelford, A.D. (1999) Aerobic Bacteria and Solids in a Three-Tank, Two-Pass, Counterflow Scalder. Poult. Sci. 78: 144147.CrossRefGoogle Scholar
Cason, J.A., Hinton, A. Jr and Ingram, K.D. (2000) Coliform, Escherichia coli, and Salmonellae Concentrations in a Multiple-Tank, Counterflow Poultry Scalder. J. Food Prot. 63: 11841188.Google Scholar
Chambers, J.R., Bisaillon, J.-R., Labbe, Y., Poppe, C. and Langford, C.F. (1998) Salmonella Prevalence in Crops of Ontario and Quebec Broiler Chickens at Slaughter. Poult. Sci. 77: 14971501.CrossRefGoogle ScholarPubMed
Clouser, C.S., Doores, S., Gast, M.G. and Knabel, S.J. (1995) The Role of Defeathering in the Contamination of Turkey Skin by Salmonella Species and Listeria monocytogenes. Poult. Sci. 74: 723731.CrossRefGoogle ScholarPubMed
Corrier, D.E., Byrd, J.A., Hargis, B.M., Hume, M.E., Bailey, R.H. and Stanker, L.H. (1999) Presence of Salmonella in the Crop and Ceca of Broiler Chickens before and after Preslaughter Feed Withdrawal. Poult. Sci. 78: 4549.CrossRefGoogle ScholarPubMed
Council Directive 92/116/EEC, Off. J. of the EC, pp. L62/1 of 15/3/1993 (Poultry Meat Hygiene Directive)Google Scholar
Dodd, C.E.R., Mead, G.C. and Waites, W.M. (1988) Detection of the Site of Contamination by Staphylococcus aureus within the Defeathering Machinery of a Poultry Processing Plant. Letters Appl. Microbiol. 7: 6366.CrossRefGoogle Scholar
Doherty, A.M., McMahon, C.M.M. and Sheridan, J.J. (1998) Thermal resistance of Yersinia enterocolitica and Listeria monocytogenes in Meat and Potatoe Substrates. J. Food Safety 18: 6983.CrossRefGoogle Scholar
Doyle, M.E. and Mazzotta, A.S. (2000) Review of Studies on the Thermal Resistance of Salmonella. J. Food Prot. 63: 779795.Google Scholar
Dufrenne, J., Ritmeester, W., Delfgou-Van Asch, E., Van Leusden, F. and De Jonge, R. (2001) Quantification of the Contamination of Chicken and Chicken Products in The Netherlands with Salmonella and Campylobacter. J. Food Prot. 64: 538541.CrossRefGoogle ScholarPubMed
Eisgruber, H. and Stolle, A. (1992) Salmonella in Commercial Chickens Cooled by the Air/Water Spray System. Proc., 3rd World Congress, Foodborne Infections and Intoxications16–19 June 1992Robert-von-Ostertag Institut of the Federal Health OfficeBerlin, Germany, Vol. I, 327330.Google Scholar
Fries, R. (1987a) Untersuchungen zur Beeinflussung des Gewebes wassergekühlter Broiler durch fleischgewinnungstechnische Prozesse. Arch. Geflügelk. 51: 4853.Google Scholar
Fries, R. (1987b): Qualitative/quantitative Untersuchungen auf Salmonella bei industriell gewonnenem Geflügelfleisch (Broiler). Dtsch. tierärztl. Wschr: 94: 197200.Google Scholar
Fries, R. (1992) An Approach to Hygienic-technological Surveillance in Poultry Meat Production. Proc., 3rd World Congress, Foodborne Infections and Intoxications16–19 July 1992Robert-von-Ostertag Institut of the Federal Health OfficeBerlin, Germany, Vol. 11, 13361340.Google Scholar
Fries, R. and Eggerding, B. (1997) Bacterial Reduction in Deep-Frozen Sterile Poultry Meat. Arch. Lebensmittelhyg. 48: 123127.Google Scholar
Fries, R. and Graw, C. (1999) Water and Air in Two Poultry Processing Plant's Chilling Facilities – a Bacteriological Survey. Brit. Poult. Sci. 40: 5258.Google Scholar
Geornaras, I., De Jesus, A.E. and Von Holy, A. (1998) Bacterial Populations Associated with the Dirty Area of a South African Poultry Abattoir. J. Food Prot. 61: 700703.Google Scholar
Graw, C. (1994) Luftkühlung und Luft-Sprüh-Kühlung in der Geflügelfleischgewinnung – ein mikrobiogischer Vergleich. Diss. Tieräztl. Hochsch. Hannover.Google Scholar
Graw, C., Kobe, A. and Fries, R. (1998) Air and Evaporative Chilling in Poultry Meat Production. A Microbiological Comparison. 1. Total Bacterial Count. Fleischwirtsch. 1997, pp. 78–80. Translated Silsoe Research Institute, No. 68 (New Series), 1998.Google Scholar
Hafez, H.M. (1999) Poultry Meat and Food Safety: Pre- and Post- Harvest Approaches to Reduce Foodborne Pathogens. World's Poult. Sci. J. 55: 269280.CrossRefGoogle Scholar
Hamm, D., Lyon, C.E., Benoff, F.H., Hudspeth, J.P., Ayres, J.L. and Minear, L.R. (1984) Meat Yields from Hot Deboned Noneviscerated Broilers. Poult. Sci. 63: 497501.Google Scholar
Hargis, B.M., Caldwell, D.J., Brewer, R.L., Corrier, D.E. and Deloach, J.R. (1995) Evaluation of the Chicken Crop as a Source of Salmonella Contamination for Broiler Carcasses. Poult. Sci. 74: 15481552.CrossRefGoogle ScholarPubMed
Heath, J.L. III, Davis, B.H., Teekell, R.A. and Watts, A.B. (1968) Water Penetration of Broiler Carcasses. Poult. Sci. 47: 19331937.CrossRefGoogle Scholar
Hinton, M.H., Allen, V.M., Tinker, D.B., Gibson, C. and Wathes, C.M. (1996) The Dispersal of Bacteria during the Defeathering of Poultry. In: Hinton, M.H. and Rowlings, C., (Editors): ‘Factors Affecting the Microbial Quality of Meat’ 2nd Vol. ‘Slaughter and Dressing’ (University of Bristol Press, Bristol, UK); p. 113121.Google Scholar
Holder, J.S., Corry, J.E.L. and Hinton, M.H. (1997) Microbial Status of Chicken Portions and Portioning Equipment. Brit. Poult. Sci. 38: 505511.Google Scholar
Humphrey, T.J., Lanning, D.G. and Beresford, D. (1981) The Effect of pH Adjustment on the Microbiology of Chicken Scald-Tank Water with Particular Reference to the Death Rate of Salmonellas. J. Appl. Bact. 51: 517527.CrossRefGoogle Scholar
Humphrey, T.J., Baskerville, A., Whitehead, A., Rowe, B. and Henley, A. (1993) Influence of Feeding Patterns on the rtificial Infection of Laying Hens with Salmonella enteritidis Phage Type 4. Vet. Rec. 132, 407409.Google Scholar
Kampelmacher, E.H. and Mossel, D.A.A. (1989) Listeria monocytogenes: Attributes and Prevention of Transmission by Food. Oxoid Culture 10, No. 1, March 1989.Google Scholar
Klinger, J., Lam, R. and Basker, D. (1980) Microbiological Effects of Severing Fractured Wings of Chickens in Industrial Slaughterhouses. Refu. vet. 37, 131134.Google Scholar
Kotula, K.L. and Pandya, Y. (1995) Bacterial Contamination of Broiler Chickens before Scalding. J. Food Prot. 58: 13261329.CrossRefGoogle ScholarPubMed
Krabisch, P. and Dorn, P. (1986) Zum qualitativen und quantitativen Vorkommen von Salmonellen beim Masthähnchen. Arch. Lebensmitrelhyg. 37, 912.Google Scholar
Lenz, Chr. and Fries, R. (1983) Stufenkontrollen in einem Geflügelschlachtbetrieb (Broiler). 2. Mitt. Fleischwirtsch. 63: 10761079.Google Scholar
LI, Y., Slavik, M.F., Walker, J.T. and Xiong, H. (1997) Pre-Chill Spray of Chicken Carcasses to Reduce Salmonella typhimurium. J. Food Sci. 62: 605607.Google Scholar
Lillard, H.S., Hamm, D. and Thomson, J.E. (1984) Effect of Reduced Processing on Recovery of Foodborne Pathogens from Hot-Boned Broiler Meat and Skin. J. Food Prot. 47, 209212.CrossRefGoogle ScholarPubMed
Mead, G.C., Hudson, W.R. and Hinton, M.H. (1994) Use of a Marker Organism in Poultry Processing to Identify Sites of Cross-Contamination and Evaluate Possible Control Measures. Brit. Poult. Sci. 35: 345354.CrossRefGoogle ScholarPubMed
Moll, A. (1992) Quantitativer Nachweis von Salmonellen in Hühnerklein und -innereien. Inaugural Diss., Dept. of Vet. Med., Free Univ. of Berlin, Germany.Google Scholar
Musgrove, M.T., Cason, J.A., Fletcher, D.L., Stern, N.J., Cox, N.A. and Bailey, J.S. (1997) Effect of Cloaca1 Plugging on Microbial Recovery from Partially Processed Broilers. Poult. Sci. 76: 530533.CrossRefGoogle ScholarPubMed
National Advisory Committee On Microbiological Criteria For Foods (NACMCF) (1997) Generic HACCP Application in Broiler Slaughter and Processing. J. Food Prot. 60: 579604.CrossRefGoogle Scholar
National Advisory Committee On Microbiological Criteria For Foods (NACMCF) (1998) Hazard Analysis and Critical Control Point Principles and Application Guidelines. J. Food Prot. 61: 762775.Google Scholar
N.N. (1997) Microbial Testing. Poult. Int. 36, Part Poultry Processing Worldwide.Google Scholar
Notermans, S., V. Erne, E.H.W., Beckers, H.J. and Oosterom, J. (1981) Beurteilung des bakteriologischen Status frischen Geflügels in Läden und auf Märkten. Fleischwirtsch. 61, 131134.Google Scholar
Notermans, S. and Kampewlmacher, E.H. (1983) Haften von Bakterien bei der Fleischverarbeitung. Fleischwirtsch. 63: 8388.Google Scholar
Obdam, J. (1991) A Processors View on Automation. In: Uijttenboogaart and Veerkamp, C.H. (Eds.): Quality of Poultry Products, Spelderholt Centre for Poultry Research, Beekbergen, The Netherlands, pp. 365370.Google Scholar
Regulation (EEC) 1538/91, Off. J. of the EC, pp. L 119/21 of 19/5/2000.Google Scholar
Renwick, S.A., McNab, W.B., Lowman, H.R. and Clarke, R.C. (1993) Variability and Determinants of Carcass Bacterial Load at a Poultry Abattoir. J. Food Prot. 56: 694699.Google Scholar
Rigby, C.E., Pettit, J.R., Baker, M.F., Bentley, A.H., Salomons, M.O. and Lior, H. (1980) Flock Infection and Transport as Sources of Salmonellae in Broiler Chickens and Carcasses. Can. J. Comp. Med. 44: 328337.Google ScholarPubMed
Schmitt, R.E., Gallo, L. and Schmidt-Lorenz, W. (1988) Microbial Spoilage of Refrigerated Fresh Broilers. IV. Effect of Slaughtering Procedures on the Microbial Association of Poultry Carcasses. Lebensm.-Wiss. u. Technol, 21: 234238.Google Scholar
Scientific Committee On Veterinary Measures Relating To Public Health (SCVPH) (1998) Benefits and Limitations of Antimicrobial Treatments for Poultry Carcasses. Europ. Comm. Dir.- Gen. XXIV, Dir. B, Scientific Health Opinions, Unit B3 – Management of Scientific Committees II, Brussels.Google Scholar
Slavik, M.F., Kim, J.-W. and Walker, J.T. (1995) Reduction of Salmonella and Campylobacter on Chicken Carcasses by Changing Scalding Temperature. J. Food Prot. 58: 689691.Google Scholar
Stephan, F. and Fehlhaber, K. (1994) Geflügelfleischgewinnung – Untersuchungen zur Hygiene des Luft-Sprüh-Verfahrens. Fleischwirtsch. 74: 870873.Google Scholar
Thomas, C.J., O'Rourke, R.D. and McMeekin, T.A. (1987) Bacterial Penetration of Chicken Breast Muscle. Food Microbiol. 4: 8795.Google Scholar
Thompson, J.K. and Patterson, J.T. (1983) Staphylococcus aureus from a Site of Contamination in a Broiler Processing Plant. Rec. Agric. Res. 31, 4553.Google Scholar
Tinker, D.B., Gibson, C., Hinton, M.H., Allen, V.M. and Wathes, C.M. (1996) Reduction of Cross-Contamination in Defeathering Machinery. World Poult. Misset 12: 1316.Google Scholar
Trampel, D.W., Hasiak, R.J., Hoffman, L.J. and Debey, M.C. (2000) Recovery of Salmonella from Water, Equipment and Carcasses in Turkey Processing Plants. J. Appl. Poult. Res. 9: 2934.Google Scholar
Veerkamp, C.H. (1994) Developments in Poultry Primary Processing Technology. Proc. 9th Eur. Poult. Conf.Glasgow7–12 Aug 1994, Vol II, pp. 328331.Google Scholar
Wesley, R.L. (1987) Reducing Downgrading and Condemnations through a Preventative Quality Assurance Program. In: Proc. 22th Nat. Meet. Poult. H. Condemn.Oct. 22–23, 1987Ocean City, Maryland.Google Scholar
Wichmann-Schauer, H., Ellerbroek, L., Delbeck, F., Forster, S., Fries, R., Haarmann, M., Helmuth, R. and Methner, U. (2001) Vorkommen von Salmonellen bei deutschem Nutzgeflügel und Geflügelfleisch. 2. Große Hähnchenmast- und schlachtbetriebe. Fleischwirtsch. 81 6: 8387.Google Scholar
World Health Organisation (1988) Salmonellosis Control: the Role of Animal and Product Hygiene. Technical Report Series 774. Geneva, pp. 39–41.Google Scholar
Yang, Z., LI, Y. and Slavik, M. (1998) Use of Antimicrobial Spray Applied with an Inside-Outside Birdwasher to Reduce Bacterial Contamination on Prechilled Chicken Carcasses. J. Food Prot. 61: 829832.Google Scholar
Yang, H., Yanbin, L. and Johnson, M.G. (2001) Survival and Death of Salmonella Typhimurium and Campylobacter jejuni in Processing Water and on Chicken Skin during Poultry Scalding and Chilling. J. Food Prot. 64: 770776.Google Scholar
Zamora, B.M., Hartung, M., Hildebrandt, G. and Käsbohrer, A. (1999) Detection of Antibodies to S. enteritidis by means of Indirect ELISA and Chemoluminiscent Immunoassay (CLIA). J. Vet.Med. B. 46: 923.CrossRefGoogle Scholar