Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T06:32:07.223Z Has data issue: false hasContentIssue false

Morphological differences, molecular characterization, and herbicide sensitivity of catchweed bedstraw (Galium aparine) populations

Published online by Cambridge University Press:  20 January 2017

Rita Hübner
Affiliation:
Department of Molecular Biology, Institute of Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
Karl Hurle
Affiliation:
Institute of Phytomedicine, Weed Science Department, University of Hohenheim, D-70593 Stuttgart, Germany
Sonja S. Klemsdal
Affiliation:
Plant Protection Centre, The Norwegian Crop Research Institute, Høgskolevn. 7, N-1432 Ås, Norway

Abstract

Plants of catchweed bedstraw from different Norwegian locations and from three other countries were compared with respect to morphological factors, herbicide sensitivity, and genetic variation. For the morphological comparison of cotyledons, whorls, leaves, and fruits five populations, grown outdoors but sheltered from rain, were used. Plants from Belgium and Sweden showed a high similarity, whereas one Norwegian population differed significantly in nearly all parameters. The same populations were used for a comparison of the sensitivity to the herbicide mecoprop-P. In this study, only slight differences appeared between the five populations. Finally, a deoxyribonucleic acid (DNA) sequence analysis of the internal transcribed spacer (ITS) regions was performed. The entire sequence of the ITS1 and ITS2 and the 5.8S subunit of ribosomal DNA were obtained from 15 populations (12 from Norway and one each from Sweden, Belgium, and Germany). The sequences had a length between 590 and 662 base pairs; intraspecific length variation was observed. Based on six insertions–deletions and 26 nucleotide substitutions, two DNA types could be distinguished. The first type consisted of eight Norwegian populations, whereas the second one contained the other seven populations including all non-Norwegian populations. The sequence alignments were used to build a phylogenetic tree. The results of the morphological comparison mostly corresponded with the results of the ITS sequence analysis. The variation was only to some extent correlated with the geographic distribution of the populations.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.Google Scholar
Andersson, L., Milberg, P., and Noronha, . 1997. Germination response of weed seeds to light, light of short duration and darkness after stratification in soil. Swed. J. Agric. Res. 27:113120.Google Scholar
Augustin, B. 1995. Klettenlabkraut: Hoestar und Starane im Vergleich. Pflanzenschutz-Praxis 1:1013.Google Scholar
Baldwin, B. G. 1993. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Am. J. Bot. 80:222238.CrossRefGoogle Scholar
Berkefeld, K. 1988. Untersuchungen zur Ökotypenbildung bei Galium aparine L. (Rubiaceae) und Lapsana communis L. (Compositae). Flora 178:93110.Google Scholar
Deichsel, G. and Trampisch, H. J. 1985. Pages 354 In Clusteranalyse und Diskriminanzanalyse, Teil 1. Stuttgart: Gustav Fischer Verlag.Google Scholar
Ernst, V., Hurle, K., and Walter, H. 1997. Variability within Galium aparine . Page 18 In Proceedings of the 10th European Weed Research Society Symposium. Poznan, Poland.Google Scholar
Fabry, S., Köhler, A., and Coleman, A. W. 1999. Intraspecific analysis: comparison of ITS sequence data and gene intron sequence data with breeding data for a worldwide collection of Gonium pectorale . J. Mol. Evol. 48:94101.CrossRefGoogle Scholar
Fernandez, I. A., Aguilar, J. F., Panero, J. L., and Feliner, G. N. 2001. A phylogenetic analysis of Doronicum (Asteraceae, Senecioneae) based on morphological, nuclear ribosomal (ITS), and chloroplast (trnL-F) evidence. Mol. Phylogenet. Evol. 20:4164.Google Scholar
Friesen, N., Fritsch, R. M., Pollner, S., and Blattner, F. R. 2000. Molecular and morphological evidence for an origin of the aberrant genus Milula within Himalayan species of Allium (Alliaceae). Mol. Phylogenet. Evol. 17:209218.CrossRefGoogle Scholar
Froud-Williams, R. J. and Ferris-Kaan, R. 1991. Intraspecific variation among populations of cleavers (Galium aparine L). Br. Crop Prot. Conf. Weeds 3:10071014.Google Scholar
Glauninger, J. 1985. Unterschiede in Morphologie und Entwicklung von Galium aparine, Galium tricornutum, Galium spurium und Galium parisiene . Bodenkultur 36:319332.Google Scholar
Groll, U. and Mahn, E. G. 1986. Zur Entwicklung ausgewählter Populationen des Klettenlabkrautes (Galium aparine). Flora 178:93110.Google Scholar
Guttermann, Y. 1973. Differences in the progeny due to daylength and hormone treatment of the mother plant. Pages 5980 In Haydecker, E., ed. Seed Ecology. London: Butterworth.Google Scholar
Hanf, M. 1983. Keimung und Entwicklung des Klettenlabkrautes (Galium aparine L.) in verschiedener Aussaattiefe. Angew. Bot. 23:152163.Google Scholar
Hardig, T. M., Brunsfeld, S. J., Fritz, R. S., Morgan, M., and Orians, C. M. 2000. Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol. Ecol. 9:924.CrossRefGoogle Scholar
Hill, A. L. and Courtney, A. D. 1991. The relative influence of genetic variation and provenance on the morphology and herbicide response of selected populations of Galium aparine . Br. Crop Prot. Conf. Weeds 3:10151022.Google Scholar
Hsiao, C., Chatteron, N. J., Asay, K. H., and Jensen, K. B. 1995a. Molecular phylogeny of the Poideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor. Appl. Genet. 90:389398.Google Scholar
Hsiao, C., Chatteron, N. J., Asay, K. H., and Jensen, K. B. 1995b. Phylogenetic relationship of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211223.CrossRefGoogle ScholarPubMed
Jeandroz, S., Roy, A., and Bousquet, J. 1997. Phylogeny and phylogeography of the circumpolar genus Fraxinus (OLEACEAE) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol. Phylogenet. Evol. 7:241251.Google Scholar
Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., and Gibson, T. J. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23:403405.Google Scholar
Jorgensen, R. A. and Cluster, P. D. 1988. Modes and tempos in the evolution of nuclear ribosomal DNA: new characters of evolutionary studies and new markers for genetic and population studies. Ann. Mo. Bot. Gard. 75:12381247.Google Scholar
Karvonen, P., Szmidt, A. E., and Savolainen, O. 1994. Length variation in the internal transcribed spacers of ribosomal DNA in Picea abies and related species. Theor. Appl. Genet. 89:969974.Google Scholar
Kees, H. 1979. Klettenlabkraut. Deutsche Landtechnische Z. 4:628.Google Scholar
Korsmo, E. 1925. Klenge-maure. Pages 171174 In E. Korsmo Ugress i nutidens jordbruk. Oslo: J.W. Cappelens Forlag.Google Scholar
Lutman, P.J.W., Dixon, A. W., and Lovegrove, A. W. 1987. The influence of dose and date of application on the control of cleavers (Galium aparine) with mecoprop and fluroxypyr alone and in mixture with ioxynil + bromoxynil. Br. Crop Prot. Conf. Weeds 2:421428.Google Scholar
Malik, N. and Vanden Born, W. H. 1988. The biology of Canadian weeds. 86. Galium aparine L. and Galium spurium L. Can. J. Plant Sci. 68:481499.Google Scholar
Milberg, P., Andersson, L., and Noronha, . 1996. Seed germination after short-duration light exposure: implications for the photo-control of weeds. J. Appl. Ecol. 33:14691478.Google Scholar
Mitchelson, K. R., Knox, O., Cheng, J., Ford, M. A., Wilson, F., and Atkinson, D. 1995. Molecular markers for genetic diversity in cleavers (Galium aparine). Br. Crop Prot. Conf. Weeds 2:451458.Google Scholar
Moore, R. J. 1975. The Galium complex in Canada. Can. J. Bot. 53:877893.CrossRefGoogle Scholar
Niemann, P. 1988. Zur Variabilität des Kletten-Labkrauts (Galium aparine). Gesunde Pflanzen 9:368373.Google Scholar
Persson, H. A. and Gustavsson, B. A. 2001. The extent of clonality and genetic diversity in lingonberry (Vaccinium vitis-idaea L.) revealed by RAPDs and leaf-shape analysis. Mol. Ecol. 10:13851397.Google Scholar
Podolsky, R. H. and Holtsford, T. P. 1995. Population structure of morphological traits in Clarkia dudleyana. I. Comparison of FST between allozymes and morphological traits. Genetics 140:733744.Google Scholar
Pötter, U. and Klopfer, K. 1987. Untersuchungen zur Blatt- und Blütenentwicklung bei Galium aparine L. (Rubiaceae). Flora 179:305314.Google Scholar
Roh, H. 1999. Morphologische und genetische Variabilität in Galium aparine L. und Galium spurium L. Diplomarbeit. Fachgebiet Herbologie, Universität Hohenheim, Stuttgart, Germany. 88 p.Google Scholar
Schäfer, B. C. and Heitefuss, R. 1995. Unkrautschwellen auch für frühen Nachauflauf. Pflanzenschutz-Praxis 3:46.Google Scholar
Schmidt, R. R. 1972. Bekämpfung von Galium aparine mit Mecoprop in Abhängigkeit von verschiedenen Bodenarten. Weed. Res. 12:174181.Google Scholar
Schulenburg, J.H.G.v.d., Englisch, U., and Wägele, J. W. 1998. Evolution of ITS1 rDNA in the Digena (Platyhelminthes: Trematoda): 3’ end sequence conservation and ITS phylogenetic utility. J. Mol. Evol. 48:212.Google Scholar
Schultz, J. L. and Soltis, P. S. 2001. Geographic divergence in Leptodactylon califonicum (Polemoniaceae): insights from morphology, enzyme electrophoresis, and restriction site analysis of rDNA. Syst. Bot. 26:7591.Google Scholar
Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acid Res. 22:46734680.Google Scholar
Van der Stappen, J., Van Campenhout, S., Lopez, S. G., and Volkaert, G. 1998. Sequencing of the internal transcribed spacer region ITS1 as a molecular tool detecting variation in the Stylosanthes guianensis species complex. Theor. Appl. Genet. 96:869877.CrossRefGoogle Scholar
Van der Weide, R. Y. 1992. Phenology of arable and hedgerow populations of Galium aparine L. in relation to climate and soil conditions. Weed Res. 32:249258.Google Scholar
Vrchotova, V. 1996. Untersuchung der biologischen Eigenschaften von Galium aparine L. Z. Pflanzenkr. Pflanzenschutz Sonderh. 15:103106.Google Scholar
Ward, H. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 56:236244.Google Scholar
White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315322 In Innis, M. A., Gelfland, D. H., Sninsky, J. J., and White, T. J., eds. PCR Protocols—A Guide to Methods and Application. San Diego: American Press.Google Scholar