Article contents
William of Sherwood, ‘Introductiones in logicam’ Critical Text
Published online by Cambridge University Press: 29 July 2016
Extract
William of Sherwood (or Shyreswood) was an English logician of the thirteenth century. Little is known of his life. He possibly taught logic at Paris from about 1235 to about 1250. By 1252 he was active as master at Oxford. Between 1254 and 1258 he became treasurer of the Cathedral of Lincoln, an office he seems to have retained until his death. He was rector of Attleborough (Buckinghamshire) from about 1257 and prebendary of Aylesbury (Lincolnshire) by 1266. He died between 1266 and 1272.
- Type
- Articles
- Information
- Copyright
- Copyright © Fordham University Press
References
1 Dictionary of National Biography 52 (1897) 146f.; P. Glorieux, Répertoire des maǐtres en théologie de Paris au XIIIe siècle I (Paris 1933) 289f. (Guillaume de Durham); J. C. Russell, Dictionary of Writers of Thirteenth-Century England (London 1936) 200; M. Grabmann, ‘Die Introductiones in logicam des Wilhelm von Shyreswood († nach 1267): Literarhistorische Einleitung und Textausgabe,’ Sb. Akad. München (1937) Heft 10 at 10–15; A. B. Emden, A Biographical Register of the University of Oxford to A.D. 1500 III (Oxford 1959) 1693f.; N. Kretzmann, trans., William of Sherwood's Introduction to Logic (Minneapolis 1966) 3–13.Google Scholar
2 Descriptions of the manuscript are provided by R. Steele, Opera hactenus inedita Rogerii Baconi XV (Oxford 1940) xvii; Grabmann, art. cit. 15–26; J. R. O'Donnell, ‘The Syncategoremata of William of Sherwood,’ Mediaeval Studies 3 (1941) 46–93 at 46; Kretzmann, op. cit. 13–16; L. M. de Rijk, ‘Some Notes on the Mediaeval Tract De insolubilibus,’ Vivarium 4 (1966) 83–115 at 90–93; H. A. G. Braakhuis, ‘The Second Tract on Insolubilia Found in Paris B. N. lat. 16617,’ Vivarium 5 (1967) 111–45 at 111f.; M. L. Roure, ‘La Problématique des propositions insolubles au XIIIe siècle et au début du XIVe,’ AHDLMA 37 (1970) 205–326 at 248; F. Alessio, ed., Lamberto d'Auxerre: Logica (Summa Lamberti) (Florence 1971) li-liii; L. M. de Rijk, ‘Some Thirteenth-Century Tracts on the Game of Obligation. III,’ Vivarium 14 (1976) 26–49 at 26–29; idem, Die mittelalterlichen Traktate De modo opponendi et respondendi (BGPhThMA nf 17; Münster 1980) 89–95. Cf. also H. A. G. Braakhuis, ‘The Views of William of Sherwood on Some Semantical Topics and Their Relation to Those of Roger Bacon,’ Vivarium 15 (1977) 111–42; E. Stump, ‘William of Sherwood's Treatise on Obligations,’ Historiographia linguistica 7 (1980) 249–64.Google Scholar
3 Concerning whom see J. N. Hillgarth, Ramon Lull and Lullism in Fourteenth-Century France (Oxford 1971) 158 et passim.Google Scholar
4 Cf. J. Valentinelli, Bibliotheca manuscripta ad S. Marci Venetiarum IV (1870) 150 (Cl. X 204), which should be supplemented by de Rijk art. cit. (1976), 27f.Google Scholar
5 A complete description of this manuscript may be found in C. H. Lohr, ‘Aristotelica Britannica,’ Theologie und Philosophie 53 (1978) 79–101 at 97–99.Google Scholar
6 See especially the footnotes to Kretzmann's translation and J. Malcolm, ‘On Grabmann's Text of William of Sherwood,’ Vivarium 9 (1971) 108–18.Google Scholar
(1.1)39 ea - sunt] conieci (cf. Boethius, De syllogismo categorico I [PL 64. 795d]); indeterminate Gr; eaptmete (?) PGoogle Scholar
(1.3)2 Cf. § 1.2.2.Google Scholar
(1.3)5 Boethius, In librum De interpretatione ed. sec. (PL 64.454d).Google Scholar
(1.3)6 Aristoteles, Perihermenias 5 (17a21).Google Scholar
(1.4)22 ut - currit] conieci; om. PGoogle Scholar
(1.5)4 Cf. § 1.3.2.Google Scholar
(1.6)3 Cf. § 1.4.2.Google Scholar
(1.7)70 Aristoteles, Perihermenias 12 (21b26–30).Google Scholar
(1.7)96 Cf. Aristoteles, Perihermenias 12–13, Analytica priora I 3, 8–22.Google Scholar
(1.7)108 Cf. Aristoteles, Perihermenias 12–13, Analytica priora I 3, 8–22.Google Scholar
(1.7)119 Aristoteles, Perihermenias 12 (21b23–26).Google Scholar
(1.7)132 Cf. Aristoteles, Perihermenias 12 (21b29–30).Google Scholar
(1.7)182 figura] cf. Kr 49 not. 93Google Scholar
(1.7)184 Cf. Aristoteles, Perihermenias 13 (22a23–31).Google Scholar
(3.1)95 negativa] coniecit Kr; om. PGoogle Scholar
(3.1)121 primae] coniecit Kr; om. PGoogle Scholar
(3.1)149 primae] coniecit Kr; om. PGoogle Scholar
(4.1)48 constructive] conieci; om. PGoogle Scholar
(4.1)53–54 Maxima - interpretato] coniecit Kr; om. PGoogle Scholar
(4.1)169 currit] add. in marg.: Fac de hac minori universalem sic: ‘Quidquid est Socrates, est sub eo, quod est omnis homo’ PGoogle Scholar
(4.1)183 Cf. Aristoteles, Analytica priora I 36 (48a40–49a5), II 22 (67b27–68a25).Google Scholar
(4.1)199 reducitur] coniecit Kr; om. PGoogle Scholar
(4.1)214 nisi] coniecit Geach (cf. Kretzmann 1968; ii); om. PGoogle Scholar
(4.1)207 Boethius, De differentiis topicis II (PL 64.1189a–b).Google Scholar
(4.1)233 cui] coniecit Gr; cum PGoogle Scholar
(4.1)235 Isthmiis] conieci (cf. Aristoteles, Metaphysica 2 [994a23]); hiis PGoogle Scholar
(4.1)254 Boethius, De differentiis topicis II (PL 64.1190a).Google Scholar
(4.1)254 Aristoteles, De generatione et corruptione II 9 (335b35).Google Scholar
(4.1)277 Cf. Aristoteles, Metaphysica I 3 (983a30) et passim.Google Scholar
(4.1)302 maxima] supplevi; om. PGoogle Scholar
(4.1)319 Aristoteles, Physica V 1 (224b7).Google Scholar
(4.1)320 Aristoteles, De anima II 4 (416b23–24).Google Scholar
(4.1)341 quod] coniecit Kr; add. non PGoogle Scholar
(4.2)5 a proportione - transumptione] conieci; ab oppositis, a proportione, a transpositione PGoogle Scholar
(4.2)113 e converso] conieci; converso PGoogle Scholar
(4.2)145 destructive sic] coniecit Kr; om. PGoogle Scholar
(4.3)7 a coniugatis - casibus] coniecit Kr; a casibus, a coniugatis PGoogle Scholar
(4.3)42 Boethius, De divisione (PL 64.877b).Google Scholar
(5.1)127 Boethius, De trinitate 4 (PL 64.1252a).Google Scholar
(5.2)7 substantivam] coniecit Kr; substantiam PGoogle Scholar
(5.2)8 nomen1] conieci; add. adiacentis sive PGoogle Scholar
(5.2)26 copulatum] add. in marg.: Hoc dicit, quia regulae datae de suppositione in pagina praecedente <5.1.13–18> tenent similiter in copulatione P+tenent+similiter+in+copulatione+P>Google Scholar
(5.3)10 definitionem] add. in marg.: positam supra <5.0.1> in principio tertii folii ante istud P+in+principio+tertii+folii+ante+istud+P>Google Scholar
(5.3)29 talibus] coniecit Braakhuis (1977, 116 nota 15); tribus PGoogle Scholar
(5.3)66 Aristoteles, Analytica priora I 1 (24b28–29).Google Scholar
(6.0)3 Aristoteles, De sophisticis elenchis 2 (165a38–39).Google Scholar
(6.1)132 erit] coniecit Kr; est PGoogle Scholar
(6.1)140 esse] conieci; add. quod PGoogle Scholar
(6.1)171 Priscianus, Institutiones grammaticae XV 39 (Keil III 89).Google Scholar
(6.1)216 Aristoteles, De sophisticis elenchis 4 (166b1–3).Google Scholar
(6.2)29 cuius] add. in marg.: scilicet accidentis additi PGoogle Scholar
(6.2)4 Aristoteles, De sophisticis elenchis 5 (166b28–30).Google Scholar
(6.2)20 Aristoteles, De sophisticis elenchis 24 (179a35–39).Google Scholar
(6.2)77 Aristoteles, De sophisticis elenchis 5 (166b37–38).Google Scholar
(6.2)110 et1] conieci; om. PGoogle Scholar
(6.2)100 Aristoteles, De sophisticis elenchis 25 (180a24–25).Google Scholar
(6.2)107 Aristoteles, De sophisticis elenchis 5 (167a23–27).Google Scholar
(6.2)154 Aristoteles, De sophisticis elenchis 5 (167a36–37).Google Scholar
(6.2)168 debeat] conieci; debeas PGoogle Scholar
(6.2)173 sumet] coniecit Kr; probet PGoogle Scholar
(6.2)212–213 animal2 - homo] coniecit Kr; homo, ergo est animal PGoogle Scholar
(6.2)236 Aristoteles, De sophisticis elenchis 6 (168b27), 7 (169b6–7).Google Scholar
(6.2)240 Aristoteles, De sophisticis elenchis 6 (168b29–32).Google Scholar
(6.2)263 Aristoteles, Analytica priora II 17 (65a38–66a15).Google Scholar
(6.2)292 Aristoteles, Analytica priora II 14 (62b29–63b21).Google Scholar
(6.2)302 Aristoteles, Analytica priora II 17 (65b9–21).Google Scholar
(6.2)317 Aristoteles, De sophisticis elenchis 30 (181a36–b24).Google Scholar
(6.2)326 Aristoteles, Perihermenias 8 (18a19–21).Google Scholar
- 4
- Cited by