Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:23:31.918Z Has data issue: false hasContentIssue false

A wide-angle broadband absorber in graphene-based hyperbolic metamaterials

Published online by Cambridge University Press:  15 October 2014

Renxia Ning*
Affiliation:
College of Information Engineering, Huangshan University, Huangshan 245041, P.R. China Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Shaobin Liu
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Haifeng Zhang
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Borui Bian
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Xiangkun Kong
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
*
Get access

Abstract

A wide-angle broadband absorber which is realized by periodic structures containing graphene-based hyperbolic metamaterials (GHMM) and isotropic medium is theoretically investigated. The GHMM is composed of monolayer graphene and conventional dielectric, which the refractive index can be tuned by the chemical potential, the thickness of dielectric and phenomenological scattering rates, respectively. A periodic structure of GHMM can obtain a broadband absorption which is shown to absorb roughly 70% (relative bandwidth is larger than 45%) of all available electromagnetic wave in absorption bandwidth at normal incident angle. Compared with some previous designs, our proposed structure has a relative bandwidth over a broad frequency range in mid-infrared. This kind periodic structures offer additional opportunities to design novel optoelectronic devices.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, Z.P. et al., Appl. Opt. 50, 1850 (2011)CrossRef
Pala, R.A. et al., Adv. Mat. 21, 3504 (2009)CrossRef
Liu, X. et al., Phys. Rev. Lett. 107, 045901 (2011)CrossRef
Lim, G.K. et al., Nat. Photon. 5, 554 (2011)CrossRef
Novoselov, K.S. et al., Science 306, 666 (2004)CrossRef
Nair, R.R. et al., Science 320, 1 (2008)CrossRef
Furchi, M. et al., Nano Lett. 12, 2773 (2012)CrossRef
Malard, L.M. et al., Phys. Rep. 473, 51 (2009)CrossRef
Mak, K.F. et al., Phys. Rev. Lett. 101, 196405 (2008)CrossRef
Hanson, G.W., J. Appl. Phys. 103, 064302 (2008)CrossRef
Kuzmenko, A.B. et al., Phys. Rev. Lett. 100, 117401 (2008)CrossRef
Gan, C.H., Appl. Phys. Lett. 101, 111609 (2012)CrossRef
Vincenti, M.A. et al., Opt. Lett. 38, 3550 (2013)CrossRef
Bonaccorso, F. et al., Nat. Photon. 4, 611 (2010)CrossRef
Xie, G.Q. et al., Opt. Mater. Express 2, 878 (2012)CrossRef
Liu, M. et al., Nature 474, 64 (2011)CrossRef
Min Woo, J. et al., Appl. Phys. Lett. 104, 081106 (2014)CrossRef
Thongrattanasiri, S. et al., Phys. Rev. Lett. 108, 047401 (2012)CrossRef
Peres, N.M.R. et al., Europhys. Lett. 101, 58002 (2013)CrossRef
Hashemi, M. et al., J. Optics 15, 055003 (2013)CrossRef
Nefedov, I.S. et al., J. Optics 15, 114003 (2013)CrossRef
Fang, Z. et al., Phys. Rev. B 85, 245401 (2012)CrossRef
Smith, D.R. et al., Phys. Rev. Lett. 90, 077405 (2003)CrossRef
Othman, M.A.K. et al., Opt. Express 21, 7614 (2013)CrossRef
Hanson, G.W. et al., J. Appl. Phys. 103, 064302 (2008)CrossRef
Andryieuski, A. et al., Opt. Express 21, 9144 (2013)CrossRef
DaSilva, A.M. et al., Phys. Rev. B 88, 195411 (2013)CrossRef
Hoffman, A.J. et al., J. Appl. Phys. 105, 122411 (2009)CrossRef
Zhang, H.F. et al., Physica B: Condens. Matter 410, 244 (2013)CrossRef
Kong, X.K. et al., J. Electromagn. Waves Appl. 27, 945 (2013)CrossRef
Falkovsky, L.A., J. Phys.: Conf. Ser. 129, 012004 (2008)
Zhang, H.F. et al., Phys. Plasmas 19, 022103 (2012)CrossRef
Grant, J. et al., Opt. Lett. 36, 945 (2011)
Obraztsov, P.A. et al., Nano Lett. 11, 1540 (2011)CrossRef
Aydin, K. et al., Nat. Comm. 12, 517 (2011)CrossRef
Avitzour, Y. et al., Phys. Rev. B 79, 045131 (2009)CrossRef