Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:43:31.899Z Has data issue: false hasContentIssue false

Visible light photoelectrochemical response of copper deposited titanium dioxide nanotubes

Published online by Cambridge University Press:  17 August 2012

C.W. Lai
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
S. Sreekantan*
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
*
Get access

Abstract

This paper presents a novel preparation of copper (Cu) deposited titanium dioxide (TiO2) nanotubes in photoelectrochemical systems. The main target was improving TiO2 applications in the areas of energy conversion under visible light. Herein, we investigated different amount of Cu deposited TiO2 nanotubes using thermal evaporation technique. Based on the results, small amount of Cu (1.09 wt.%) showed the improvement in photoelectrochemical (PEC) response under visible light. Optimum amount of Cu deposited on TiO2 nanotubes will inhibit recombination rate of photogenerated charge carriers and improve the charge separation and transfer under visible light illumination. However, the excess amount of Cu deposited on TiO2 nanotubes will impede the photocurrent to flow and resulted in lower photoconversion efficiency. The reason may be attributed to the formation of composite structure on TiO2 nanotubes that serve as defects in the Cu/TiO2 interface by the lattice mismatch that will serve as recombination site for the charge carriers.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Z., Hossain, M.F., Takahashi, T., Int. J. Hydrogen Energy 35, 8528 (2010)CrossRef
Cui, X., Ma, M., Zhang, W., Yang, Y., Xhang, Z., Electrochem. Commun. 10, 367 (2008)CrossRef
Park, J.H., Park, O.O., Appl. Phys. Lett. 89, 163106 (2006)CrossRef
Zeng, K., Zhang, D., Progr. Energy Combust. Sci. 36, 307 (2010)CrossRef
Akira, F., Tata, N.R., Donald, A.T., J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000)
Turner, J.A., Science 285, 687 (1999)CrossRef
Tromp, T.K., Shia, R.L., Allen, M., Eiler, J.M., Yung, Y.L., Science 300, 1740 (2003)CrossRef
Ahn, K.S., Lee, S.H., Dillon, A.C., Tracy, C.E., Pitts, R., J. Appl. Phys. 101, 093524 (2007)CrossRef
Dholam, R., Patel, N., Adami, M., Miotello, A., Int. J. Hydrogen Energy 34, 5337 (2009)CrossRef
Ulleberg, O., Int. J. Hydrogen Energy 28, 21 (2003)CrossRef
Gong, Y., Zhang, J.L., Chen, F., Anpo, M., J. Phys. Chem. C 111, 6976 (2007)
Ho, W.K., Yu, J.C., Lee, S.C., Chem. Commun. 111, 1115 (2006)CrossRef
Fernandez-Garcia, M., Martinez-Arias, A., Fuerte, A., Conesa, J.C., J. Phys. Chem. B 109, 6075 (2005)CrossRef
Mohapatra, S.K., Misra, M., J. Phys. Chem. C 111, 11506 (2007)CrossRef
Beranek, R., Macak, J.M., Gartner, M., Meyer, K., Schmuki, P., Electrochim. Acta 54, 2640 (2009)CrossRef
Hathway, T., Rockafellow, E.M., Oh, Y.C., William, S.J., J. Photochem. Photobiol. A 207, 197 (2009)CrossRef
Lai, C.W., Sreekantan, S., J. Nanomater. 2011, 142463 (2011)CrossRef
Fujishima, A., Zhang, X.T., Tryk, D.A., Surf. Sci. Rep. 63, 515 (2008)CrossRef
Bandara, J., Shankar, K., Basham, J., Wietasch, H., Paulose, M., Varghese, O.K., Eur. Phys. J. Appl. Phys. 53, 20601 (2011)CrossRef
Mohammadpour, R., Iraji zad, A., Ahadian, M.M., Taghavinia, N., Dolati, A., Eur. Phys. J. Appl. Phys. 47, 10601 (2009)CrossRef
Kim, H.J., Lee, K.H., Electrochem. Solid-State Lett. 12, C10 (2009)CrossRef
Yan, J., Zhou, F., J. Mater. Chem. 21, 9406 (2011)CrossRef
Ghicov, A., Schmuki, P., Chem. Commun. 20, 2791 (2009)CrossRef
Wang, D., Liu, Y., Yu, B., Zhou, F., Liu, W., Chem. Mater. 21, 1198 (2009)CrossRef
Zhang, Z., Hossain, M.F., Takahashi, T., Int. J. Hydrogen Energy 35, 8528 (2010)CrossRef
Sun, L., Zhang, S., Sun, X., He, X., J. Nanosci. Nanotechnol. 10, 4551 (2010)CrossRef
Fernandez-Garcia, M., Martinez-Arias, A., Fuerte, A., Conesa, J.C., J. Phys. Chem. B 109, 6075 (2005)CrossRef
Xie, Y., Zhou, L., Lu, J., J. Mater. Sci. 44, 2907 (2009)CrossRef
Shen, Y.F., Xiong, T.Y., Li, T.F., Yang, K., Appl. Catal. B Env. 83, 177 (2008)CrossRef
Parayil, S.K., Lee, Y.M., Yoon, M., Electrochem. Commun. 11, 1211 (2009)CrossRef
Li, C., Jiang, Z., Yao, Z., Dalton Trans. 39, 10692 (2010)CrossRef
Xiao, M.W., Wang, L.S., Huang, X.J., Wu, Y.D., Dang, Z., J. Alloys Compd. 470, 486 (2009)CrossRef
Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., Renew. Sust. Energ. Rev. 11, 401 (2007)CrossRef
Iida, C., Sato, M., Nakayama, M., Sanada, A., Int. J. Electrochem. Sci. 6, 4730 (2011)
Liu, Y., Zhou, H., Li, J., Chen, H., Li, D., Zhou, B., Cai, W., Nano-Micro Lett. 2, 277 (2010)CrossRef
Hou, Y., Li, X., Zou, X., Quan, X., Chen, G., Environ. Sci. Technol. 43, 858 (2009)CrossRef
Huang, L., Peng, F., Wang, H., Yu, H., Geng, W., Yang, J., Zhang, S., Zhao, H., Mater. Chem. Phys. 130, 316 (2011)CrossRef
Zhang, S., Zhang, S., Peng, F., Zhang, H., Liu, H., Zhao, H., Electrochem. Commun. 13, 861 (2011)CrossRef
Sreekantan, S., Wei, L.C., Lockman, Z., J. Electrochem. Soc. 158, C397 (2011)CrossRef
Macak, J.M., Gong, B.G., Hueppe, M., Schmuki, P., Adv. Mater. 19, 3027 (2007)CrossRef
Mohapatra, S.K., Banerjee, S., Misra, M., Nanotechnology 19, 315601 (2008)CrossRef
Leghari, S.A.K., Shamaila, S., Tian, B.Z., Chen, F., Zhang, J., Appl. Catal. B: Environ. 91, 397 (2009)
Liqiang, J., Xiaojun, S., Weimin, C., Zili, X., Yauguo, D., Honggang, F., J. Phys. Chem. Solids 64, 615 (2003)CrossRef
Withana, S., Micha, T., J. Electrochem. Soc. 129, 1240 (1982)
Shi, J., Chen, J., Feng, Z., Chen, T., Lian, Y., Wang, X., Li, C., J. Phys. Chem. C 111, 693 (2007)CrossRef
Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.K., Madras, G., Langmuir 20, 2900 (2004)CrossRef
Yoong, L.S., Chong, F.K., Dutta, B.K., Energy 34, 1652 (2009)CrossRef
Cao, Z., Cao, X.Q., Sun, L.X., He, Y.H., Adv. Mat. Res. 239, 3298 (2011)
SreeHarsha, K.S., Principles of Physical Vapour Deposition of Thin Films (Technology & Engineering, Elsevier, 2006)Google Scholar