Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T09:28:06.610Z Has data issue: false hasContentIssue false

Vickers hardness, indentation creep and corrosion behaviour of Al-5Ti-1B alloy with copper content

Published online by Cambridge University Press:  18 November 2014

El Said Gouda*
Affiliation:
Department of Solid State Physics, National Research Center, Dokki, Giza, Egypt Physics Department, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan, Saudi Arabia
Amira Nassar
Affiliation:
Department of Solid State Physics, National Research Center, Dokki, Giza, Egypt
*
Get access

Abstract

The effects of 1, 3 and 5 wt.% Cu additions on structure, Vickers hardness, indentation creep and corrosion behaviour of Al-5Ti-1B ternary alloy were studied and analyzed. The Al-5Ti-1B alloy exhibited a mixture of Al3Ti and TiB2 intermetallic compounds (IMCs), and Al solid solution. Additions of 1 and 3 wt.% Cu showed the same phases, indicating a complete solubility of Cu atoms in Al matrix. In addition, the Al-5Ti-1B-5Cu alloy exhibited a precipitation of CuAl2 IMC. Furthermore, additions of Cu decreased the particle size of Al matrix. This structural behaviour increased rapidly the Vickers hardness number (HV) from 643 to 1395 MPa, increased the indentation creep resistance and improved corrosion behaviour of the Al-5Ti-1B alloy. Cu is anti-corrosion phase when completely dissolved or precipitated as IMC in Al matrix.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suryanarayana, C. (Ed.), Non-Equilibrium Processing of Materials (Elsevier, Oxford, UK, 1999)Google Scholar
Mirchandani, P., Benn, R., Heck, K., Lee, E., Chia, E., Kim, N. (Eds.), Light-Weight Alloys for Aerospace Applications (TMS, Warrendale, PA, 1989), p. 33Google Scholar
Hawk, J., Mirchandani, P., Benn, R., Wilsdorf, H., Kim, Y., Griffith, W. (Eds.), Dispersion Strengthened Aluminum Alloys (TMS, Warrendale,PA, 1988), p. 551Google Scholar
Froes, F., MPR 44, 59 (1989)
Liu, S., Liu, W., Zhang, Y., Zhang, X., Deng, Y., J. Alloys Compd. 507, 53 (2010)CrossRef
Nie, J., Ma, X., Ding, H., Liu, X., J. Alloys Compd. 486, 185 (2009)CrossRef
Hashimoto, K., Doi, H., Kasahara, K., Tsujimoto, T., Suzuki, T., J. Jpn Inst. Metals 52, 816 (1988)CrossRef
Lee, K., Moon, I., Scr. Metall. Mater. 29, 737 (1993)CrossRef
Chang, W., Muddle, B., Mat. Sci. Eng. A 192–193, 233 (1995)CrossRef
Okamoto, H., J. Phase Equilibria 14, 120 (1993)CrossRef
Li, P., Ma, X., Li, Y., Nie, J., Liu, X., J. Alloys Compd. 503, 286 (2010)CrossRef
Easton, M., Davidson, C., St John, D., Mater. Trans. 52, 842 (2011)CrossRef
El-Ashram, T., Shalaby, R., J. Electron. Mater. 34, 212 (2005)CrossRef
Mahmudi, R., Geranmayeh, A., Mahmoodi, S., Khalatbari, A., J. Mater. Sci.: Mater. Electron. 18, 10 (2007)
Gouda, E., Ahmed, E., Saad Allah, F., Eur. Phys. J. Appl. Phys. 45, 10901 (2009)CrossRef
Gouda, E., Ahmed, E., Tawfik, N., Effect of Cu and Mg Content on Structure, Corrosion and Mechanical Properties of Al-9Zn Alloy, vol. VII (Heat Treatment and Surface Engineering, Romania, 2008), p. 4Google Scholar
Cullity, B., Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, Reading, MA, USA, 1959)Google Scholar
Kamal, M., Meikhail, M., El-Bediwi, A., Gouda, E., Radiat. Eff. Defects Solids 7, 301 (2005)CrossRef