Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:20:13.101Z Has data issue: false hasContentIssue false

Two photon absorption in semi-insulating gallium arsenide photoconductive switch irradiated by a picosecond infrared laser

Published online by Cambridge University Press:  15 September 2000

F. Lacassie
Affiliation:
Société Alliage, 75005 Paris, France
D. Kaplan
Affiliation:
Société Alliage, 75005 Paris, France
Th. De Saxce
Affiliation:
Thomson Shorts systèmes SA, 92223 Bagneux, France
P. Pignolet*
Affiliation:
LGE, Université de Pau, 64000 Pau, France
Get access

Abstract

We study gallium arsenide (GaAs) high voltage photoconductive switches triggered by a 30 ps neodymium: yttrium aluminium garnet (Nd:YAG) laser, i.e. using photons of energy smaller than the band gap. We measure optical absorption at Brewster incidence under optical pulse excitation and determine the extrinsic one photon and intrinsic two photon absorption coefficients. Analyzing the photoconductive resistance under different power densities of laser radiation, and using the absorption data, we demonstrate that only about 20% of the photons absorbed by the extrinsic process are converted into free electrons. We conclude that high efficiencies can only be obtained by using two photon absorption, which is feasible with ultrafast lasers and focussed beams.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auston, D.H., Appl. Phys. Lett. 26, 101 (1975). CrossRef
F.J. Zutavern, G.M. Loubriel, M.W. O'Malley, Proceedings of 6th IEEE Pulsed Power Conference, Arlington, 1987, edited by B.H. Bernstein, P.J. Turchi, p. 577.
G.M. Loubriel, M.W. O'Malley, F.J. Zutavern, Proceedings of 6th IEEE Pulsed Power Conference, Arlington, 1987, edited by B.H. Bernstein, P.J. Turchi, p. 145.
F.J. Zutavern, G.M. Loubriel, M.W. O'Malley, W.D. Helgeson, D.I. McLaughlin, Proceedings of 8th IEEE Pulsed Power Conference, San Diego, 1991, edited by K. Prestwich, R. White, p. 23.
Pocha, M.D., Druce, R.L., IEEE Trans. Electron Devices 37, 2486 (1990). CrossRef
Nunnally, W.C., IEEE Trans. Electron Devices 37, 2439 (1990). CrossRef
G. Mourou, W.H. Knox, S. Williamson, Picosecond optoelectronic devices (C.H. Lee, Academic press London, 1984), p. 219.
Chen, Y., Williamson, S., Brock, T., Smith, F.W., Calawa, A.R., Appl. Phys. Lett. 39, 1984 (1991). CrossRef
M. Cuzin, C. Pierrat, E. Rossa, Nuclear Instruments and Methods in Physics Research (North Holland Publishing, Amsterdam, 1989), Vol. A283, p. 310.
J.A. Valdmanis, G. Mourou, IEEE J. Quantum Electron. QE 22, 69 (1986).
Lee, C.H., IEEE Trans. Microwave Theory Tech. 38, 596 (1990). CrossRef
S.M. Sze, Physics of semiconductors devices (Wiley, New York, 1981).
Baraff, G.A., Shulter, M.A., Phys. Rev. B 458, 15 (1992). APS Link not valid for this citation
Stewart, A.F., Bass, M., Appl. Phys. Lett. 37, 1040 (1980). CrossRef
I.W. Boyd, Two-photon IR absorption coefficient of GaAs, in Properties of Gallium Arsenide, 2nd edn. (INSPEC, London, 1990), p. 190.
Kaminska, M. et al., Appl. Phys. Lett. 56, 1109 (1984).