Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T21:48:52.460Z Has data issue: false hasContentIssue false

Thermal diffusivity variations in nanoparticle administered phantom tissues – a photoacoustic investigation

Published online by Cambridge University Press:  08 October 2012

J. Joseph
Affiliation:
The Centre for Optical & Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang avenue, 639798, Singapore
K. Sathiyamoorthy
Affiliation:
The Centre for Optical & Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang avenue, 639798, Singapore
V.M. Murukeshan*
Affiliation:
The Centre for Optical & Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang avenue, 639798, Singapore
L.S. Woh
Affiliation:
The Centre for Optical & Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang avenue, 639798, Singapore
*
Get access

Abstract

Gold nanoparticles have great potential toward optical investigations in biological tissues which include imaging applications as well as therapeutic applications. However, introduction of gold nanoparticles such as nanospheres into the tissue may alter the inherent physical properties of the embedding medium. Of note, the thermal diffusivity of the medium will be significantly altered imposing serious limitations to the efficacy of several imaging and therapeutic modalities. In this context, we report experimental investigations based on open photoacoustic cell configuration to evaluate the thermal diffusivity changes in polyvinyl alcohol (PVA) phantom tissue doped with gold nanospheres. The investigations performed demonstrate a non-destructive methodology for the measurement of thermal diffusivity and the experimental results show that the thermal diffusivity of the tissue will be significantly reduced when they are administered with plasmonic nanoparticles.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El-Sayed, I.H., Huang, X., El-Sayed, M.A., Nano Lett. 5, 829 (2005)CrossRef
Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., Curr. Opin. Biotechnol. 16, 63 (2005)CrossRef
Han, M., Gao, X., Su, J.Z., Nie, S., Nat. Biotechnol. 19, 631 (2001)CrossRef
Kumar, S., Richards-Kortum, R., Nanomedicine 1, 23 (2006)CrossRef
Loo, C., Hirsch, L., Lee, M.H., Chang, E., West, J., Halas, N., Drezek, R., Opt. Lett. 30, 1012 (2005)CrossRef
Li, M.-L., Oh, J.-T., Xie, X.Y., Ku, G., Wang, W., Li, C., Lungu, G., Stoica, G., Wang, L.H.V., Proc. IEEE 96, 481 (2008)
Aslan, K., Lakowicz, J.R., Geddes, C.D., Curr. Opin. Chem. Biol. 9, 538 (2005)CrossRef
Rosi, N.L., Mirkin, C.A., Chem. Rev. 105, 1547 (2005)CrossRef
Pustovalov, V.K., Smetannikov, A.S., Zharov, V.P., Laser Phys. Lett. 5, 775 (2008)CrossRef
Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I., ACS Nano 2, 889 (2008)CrossRef
Sathiyamoorthy, K., Vijayan, C., Mater. Lett. 61, 4156 (2007)CrossRef
Valvano, J.W., Cochran, J.R., Diller, K.R., Int. J. Thermophys. 6, 301 (1985)CrossRef
Telenkov, S.A., Youn, J.I., Goodman, D.M., Welch, A.J., Milner, T.E., Phys. Medicine Biol. 46, 551 (2001)CrossRef
Qiu, P.F., Zhang, S.Y., Shui, X.J., Eur. Phys. J.: Special Topics 153, 487 (2008)
Bell, A.G., Am. J. Sci. 20, 305 (1880)CrossRef
Lao, Y., Xing, D., Yang, S., Xiang, L., Phys. Med. Biol. 53, 4203 (2008)CrossRef
Yin, B., Xing, D., Wang, Y., Zeng, Y., Tan, Y., Chen, Q., Phys. Med. Biol. 49, 1339 (2004)CrossRef
Gao, G., Yang, S., Xing, D., Opt. Lett. 36, 3341 (2011)CrossRef
Yuan, Y., Yang, S., Xing, D., Appl. Phys. Lett. 100, 023702 (2012)CrossRef
Patel, C.K.N., Tam, A.C., Appl. Phys. Lett. 34, 467 (1979)CrossRef
Tam, A.C., Patel, C.K.N., Appl. Opt. 18, 3348 (1979)CrossRef
Rosencwaig, A., Gersho, A., J. Appl. Phys. 47, 64 (1976)CrossRef
Rosencwaig, A., Science 181, 657 (1973)CrossRef
Rockley, M.G., Davis, D.M., Richardson, H.H., Science 210, 918 (1980)CrossRef
Poulet, P., J. Phys. Colloq. 44, 413 (1983)CrossRef
Campbell, S.D., Yee, S.S., Afromowitz, M.A., J. Bioengineer. 1, 185 (1977)
Helander, P., Lundstrom, I., J. Photoacoustics 1, 203 (1982)
Motylewski, J., Ranachowski, J., Archit. Acoust. 9, 51 (1983)
Balageas, D.L., Krapez, J.C., Cielo, P., J. Appl. Phys. 59, 348 (1986)CrossRef
Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A., J. Phys. Chem. B 110, 7238 (2006)CrossRef
James, J., Murukeshan, V.M., Lye, S.W., Adv. Sci. Eng. Med. 3, 176 (2011)