Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:24:20.187Z Has data issue: false hasContentIssue false

Thermal characterisation of AlGaN/GaN HEMTs grown on silicon and sapphire substrates based on pulsed I-V measurements

Published online by Cambridge University Press:  06 May 2003

R. Aubry*
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
J.-C. Jacquet
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
B. Dessertenne
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
E. Chartier
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
D. Adam
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
Y. Cordier
Affiliation:
CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France
F. Semond
Affiliation:
CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France
J. Massies
Affiliation:
CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France
M.-A. DiForte-Poisson
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
A. Romann
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
S. L. Delage
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
Get access

Abstract

The high power RF device performance decreases as operation temperature increases (e.g. fall of electron mobility impacting the cut-off frequencies and degradation of device reliability). Therefore the determination of device temperature is a key issue for device topology optimisation. This work presents the comparison between pulsed I-V at different temperature and DC measurements of AlGaN/GaN HEMTs grown on two different substrates: sapphire and silicon. This technique allows the determination of mean channel temperature and the device thermal resistance. The thermal resistance is a classical way to define the average channel temperature as a function of the dissipated power. In this work the thermal resistance ratio of the HEMT grown on sapphire compared to the one grown on silicon is found to be 1.7 instead of 3 as expected from straightforward thermal conductivity ratio. This lower difference is clearly attributed to the contribution of the GaN buffer layer.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Micovic, M., et al., Electron. Lett. 36, 358 (2000) CrossRef
L.F. Eastman, Joint ONR/MURI Review (5/15-16, 2001), CA (USA)
Bhapkar, U., Shur, M., J. Appl. Phys. 82, 1649 (1997) CrossRef
Albrecht, J.D., Wang, R.P., Ruden, P.P., Farahmand, M., Brennan, K.F., J. Appl. Phys. 83, 4777 (1998) CrossRef
Y. Cordier, F. Semond, J. Massies, B. Dessertenne, S. Cassette, M. Surrugue, D. Adam, S.L. Delage, Electron. Lett. (2002) to be published
M.-A. Di Forte Poisson, A. Romman, M. Tordjman, B. Dessertenne, S. Cassette, M. Surrugue, S. Delage, LP-MOCVD growth of GaAln on sapphire. Application to HEMT's devices, 9th European Workshop on Metal-Organic Vapour Phase Epitaxy and Related Growth Techniques, June 10th-13th, 2001
S.-L. Delage, R. Aubry, B. Dessertenne, D. Floriot, E. Chartier, M. Surrugue, Y. Cordier, D. Pons, Development of GaN power HEMT Technology on Si Substrates, MTT-S International Microwave Symposium Workshop Notes and Short Courses, No. 66, Seattle, Washington, 2-7 June 2002
Chumbes, E.M., Schremer, A.T., Smart, J.A., Wang, Y., MacDonald, N.C., Hogue, D., Komiak, J.J., Lichwalla, S.J., Leoni, R.E., Shealy, J.R., IEEE Trans. Electron. Devices 48, 420 (2001) CrossRef
Rodriguez-Tellez, J., Fernandez, T., Mediavilla, A., Tazon, A., IEEE Trans. Microwave Theory Tech. 49, 1352 (2001) CrossRef
Teyssier, J.P., Bouysse, P., Ouarch, Z., Barataud, D., Peyretaillade, T., Quéré, R., Trans. Microwave Theory Tech. 46, 2043 (1998) CrossRef
Rodriguez-Tellez, J., Stothard, B.P., Al-Daas, M., Circuits Devices Syst. 3, 129 (1996) CrossRef
Vetury, R., Zhang, N.Q., Keller, S., IEEE Trans. Electron. Devices 48, 560 (2001) CrossRef
J. Taine, J.-P. Petit, Transferts Thermiques, Mécanique des fluides anisothermes (Dunod, Chap. II), pp. 23-44, 1998
Gaska, R., Chen, Q., Yang, J., Osinsky, A., Asif Khan, M., Shur, M.S., Fellow, IEEE Electron. Device Lett. 18, 492 (1997) CrossRef