Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:38:02.028Z Has data issue: false hasContentIssue false

Role of height and contact interface of CNT microstructures on Si for high current field emission cathodes

Published online by Cambridge University Press:  03 August 2012

A. Navitski*
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
P. Serbun
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
G. Müller
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
R.K. Joshi
Affiliation:
Department of Chemistry, Eduard Zintl Institute, Inorganic Chemistry, Technische Universität Darmstadt, Petersenstr. 20, 64287 Darmstadt, Germany
J. Engstler
Affiliation:
Department of Chemistry, Eduard Zintl Institute, Inorganic Chemistry, Technische Universität Darmstadt, Petersenstr. 20, 64287 Darmstadt, Germany
J.J. Schneider
Affiliation:
Department of Chemistry, Eduard Zintl Institute, Inorganic Chemistry, Technische Universität Darmstadt, Petersenstr. 20, 64287 Darmstadt, Germany
*
Get access

Abstract

Regular arrays of vertically aligned microstructures consisting of entangled carbon nanotubes (CNTs) of different height and contact interface were grown on Si substrates with a bimetallic catalyst by water-assisted chemical vapor deposition. The arrays of high and wide CNT blocks (150–300 μm, 50–140 μm square) showed the ability to reach high stable field emission (FE) currents per block up to 300 μA due to the presence of multiple CNT emitters. However, significant outgrowth of the CNTs and limited mechanical stiffness of such blocks led to a limited FE homogeneity and alignment of the emitters. For the arrays of small rounded CNT bundles (5 μm, 20 μm diameter), well-aligned and highly efficient FE with maximum currents up to 40 μA per CNT bundle have been achieved. Unusual I-V curves with current saturation, strong activation effects and glowing spots just before destruction have been observed and are discussed by means of band structure considerations.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Heer, W.A., Chatelin, A., Ugarte, D.A., Science 270, 1179 (1995)CrossRef
Rinzler, G., et al., Science 269, 1550 (1995)CrossRef
Ding, F., Bolton, K., Rosen, A., J. Electron. Mater. 35, 207 (2006)CrossRef
Dean, K.A., Burgin, T.P., Chalamala, B.R., Appl. Phys. Lett. 79, 1873 (2001)CrossRef
Milne, W.I., Teo, K.B.K., Amaratunga, G.A.J., Legagneux, P., Gangloff, L., Schnell, J.P., Semet, V., Binh, V.T., Goeninget, O., J. Mater. Chem. 14, 933 (2004)CrossRef
Xu, N.S., Huq, S.E., Mater. Sci. Eng. R 48, 47 (2005)CrossRef
Yi, W.K., Jeong, T.W., Yu, S.G., Heo, J.N., Lee, C.S., Lee, J.H., Kim, W.S., Yoo, J.B., Kim, J.M., Adv. Mat. 14, 1464 (2002)3.0.CO;2-4>CrossRef
Kim, H.S., Kim, Y.C., Kim, D.W., Ahn, S.J., Jang, Y., Kim, H.W., Seong, D.J., Park, K.W., Park, S.S., Kim, B.J., Microelectron. Eng. 83, 962 (2006)CrossRef
Bower, C., Zhu, W., Shalom, D., Lopez, D., Chen, L.H., Gammel, P.L., Jin, S., Appl. Phys. Lett. 80, 3820 (2002)CrossRef
Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., Okuyama, F., Appl. Phys. Lett. 78, 2578 (2001)CrossRef
Zhang, J., Yang, G., Cheng, Y., Gao, B., Qiu, Q., Lee, Y.Z., Lu, J.P., Zhou, O., Appl. Phys. Lett. 86, 184104 (2005)CrossRef
Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.-M., Kernet, K., Appl. Phys. Lett. 76, 2071 (2000)CrossRef
Navitski, A., Müller, G., Sakharuk, V., Prudnikava, A.L., Shulitski, B.G., Labunov, V.A., J. Vac. Sci. Technol. B 28, C2B14 (2010)CrossRef
Wang, X.Q., Wang, M., Ge, H.L., Chen, Q., Xu, Y.B., Physica E 30, 101 (2005) CrossRef
Wang, X.Q., Xu, Y.B., Ge, H.L., Wang, M., Diamond Rel. Mater. 15, 1565 (2006)CrossRef
Chen, L.F., Song, H., Cao, L.Z., Jiang, H., Li, D.B., Guo, W.G., Liu, X., Zhao, H.F., Li, Z.M., J. Appl. Phys. 106, 033703 (2009)CrossRef
Sharma, H., Shukla, A.K., Vankar, V.D., J. Appl. Phys. 110, 033726 (2011)CrossRef
Zhang, J., Wang, X., Yang, W., Yu, W., Feng, T., Li, Q., Liu, X., Yang, C., Carbon 44, 418 (2006)CrossRefPubMed
Wakaya, F., Katayama, K., Gamo, K., Microelectron. Eng. 67, 853 (2003)CrossRef
Cola, B.A., Xu, J., Fisher, T.S., Int. J. Heat Mass Trans. 52, 3490 (2009)CrossRef
Navitski, A., Serbun, P., Müller, G., Engstler, J., Joshi, R., Schneider, J.J., Book of Abstracts, in 23rd Int. Vacuum Nanoelectronics Conf., Palo Alto, USA, 2010, IEEE Cat. No. CFP10VAC-PRT, p. 167
Schneider, J.J., Joshi, R., Navitski, A., Sakharuk, V., Müller, G., Nanoscale 3, 3258 (2011)
Lysenkov, D., Müller, G., IJNT 2, 239 (2005)CrossRef
Gröning, O., Nilsson, L.O., Gröning, P., Schlapbach, L., Solid-State Electron. 45, 929 (2001)CrossRef
Zhirnov, V.V., Lizzul-Rinne, C., Wojak, G.J., Sanwald, R.C., Hren, J.J., J. Vac. Sci. Technol. B 19, 87 (2001)CrossRef
Zhong, D.Y., Zhang, G.Y., Liu, S., Sakurai, T., Wang, E.G., Appl. Phys. Lett. 80, 506 (2002)CrossRef
Bonard, J.M., Klinke, C., Kenneth, A.D., Coll, F.C., Phys. Rev. B 67, 115406 (2003)CrossRef
Navitski, A., Serbun, P., Müller, G., Joshi, R., Engstler, J., Schneider, J.J., in Proc. of the 24th Int. Vacuum Nanoelectronics Conf., Wuppertal, Germany, 2011, IEEE Cat. No. CFP11VAC-ART, p. 27
Latham, R., High Voltage Vacuum Insulation (Academic Press, London, 1995)Google Scholar
Ning, T.H., Solid-State Electron. 21, 273 (1978)CrossRef
Toyama, T., Hiratsuka, K., Okamoto, H., Hamakawa, Y., J. Non-Cryst. Solids 198, 198 (1996)CrossRef