Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T15:15:21.144Z Has data issue: false hasContentIssue false

Numerical simulation of transitions between back discharge regimes

Published online by Cambridge University Press:  23 October 2014

Jaroslav Jánský*
Affiliation:
Commissariat à l’énergie atomique et aux énergies alternatives, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
Delphine Bessières
Affiliation:
Université de Pau et de Pays de l’Adour, Laboratoire SIAME, UFR Sciences, BP 1155, 64013 Pau Cedex, France
Jean Paillol
Affiliation:
Université de Pau et de Pays de l’Adour, Laboratoire SIAME, UFR Sciences, BP 1155, 64013 Pau Cedex, France
Florent Lemont
Affiliation:
Commissariat à l’énergie atomique et aux énergies alternatives, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
*
Get access

Abstract

This paper presents numerical simulations of transitions between back discharge regimes. Back discharge refers to any discharge initiated at or near a dielectric layer covering a passive electrode. In this work, a pinhole in a dielectric layer on a plane anode serves as a model for back discharge activity. We have studied transitions between back discharge regimes by varying the surface charge density on the dielectric layer and the electric field in front of the pinhole. From the variation of these two independent parameters, the back discharge regimes have been depicted as a mode diagram inspired by the experimental study of Masuda and Mizuno. The resulting diagram includes the different discharge regimes that are commonly observed in experiments. The propagation of a positive ionizing wave inside the pinhole toward its edge, and the resulting formation of a plasma zone at its exit constitute the onset stage of back discharge. From this stage, the transitions to volume discharge or surface discharge can occur. The volume discharge regime consists of the propagation of a discharge in space toward the cathode which can be superimposed with the propagation of a discharge above the dielectric layer surface. The diagram reveals the conditions for transitions between back discharge regimes.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Czech, T., Sobczyk, A.T., Jaworek, A., Eur. Phys. J. D 65, 459 (2011)CrossRef
White, H.J., Industrial Electrostatic Precipitation, (Addison-Wesley, 1963), pp. 128135Google Scholar
Mizuno, A., IEEE Trans. Dielectr. Electr. Insul. 7, 615 (2000)CrossRef
Jaworek, A., Krupa, A., Czech, T., J. Electrostatics 65, 133 (2007)CrossRef
Adamiak, K., J. Electrostatics 71, 673 (2013)CrossRef
Silvestre de Ferron, A., Reess, T., Pécastaing, L., Pignolet, P., Lemont, F., J. Phys. D: Appl. Phys. 42, 105504 (2009)CrossRef
Jánský, J., Gaychet, S., Bessières, D., Soulem, N., Paillol, J., Lemont, F., J. Phys. D: Appl. Phys. 47, 065202 (2014)CrossRef
Masuda, S., Mizuno, A., J. Electrostatics 2, 375 (1977)CrossRef
Masuda, S., Mizuno, A., J. Electrostatics 4, 35 (1977)CrossRef
Masuda, S., Mizuno, A., J. Electrostatics 4, 215 (1978)CrossRef
Cross, J., J. Phys. D: Appl. Phys. 18, 2463 (1985)CrossRef
Cross, J., J. Electrostatics 18, 327 (1986)CrossRef
Jaworek, A., Czech, T., Rajch, E., Lackowski, M., J. Electrostatics 64, 326 (2006)CrossRef
Jaworek, A., Sobczyk, A.T., Rajch, E., J. Phys. Conf. Ser. 142, 012010 (2008)CrossRef
Czech, T., Sobczyk, A.T., Jaworek, A., Krupa, A., J. Electrostatics 70, 269 (2012)CrossRef
Krupa, A., Lackowski, M., Czech, T., J. Phys. Conf. Ser. 142, 012040 (2008)CrossRef
Krupa, A., J. Electrostatics 67, 291 (2009)CrossRef
Krupa, A., J. Phys. Conf. Ser. 301, 012022 (2011)CrossRef
Peyrous, R., Ozone: Sci. Eng. 26, 11 (2004)CrossRef
Morrow, R., Lowke, J.J., J. Phys. D: Appl. Phys. 30, 614 (1997)CrossRef
Kulikovsky, A.A., J. Comput. Phys. 119, 149 (1995)CrossRef
Massines, F., Gherardi, N., Naudé, N., Ségur, P., Eur. Phys. J. Appl. Phys. 47, 22805 (2009)CrossRef
Jánský, J., Tholin, F., Bonaventura, Z., Bourdon, A., J. Phys. D: Appl. Phys. 43, 395201 (2010)CrossRef
Ventzek, P., Sommerer, T., Hoekstra, R., Kushner, M., Appl. Phys. Lett. 63, 605 (1993)CrossRef
Hagelaar, G., Kroesen, G., J. Comput. Phys. 159, 1 (2000)CrossRef
Lin, K.-M., Hung, C.-T., Hwang, F.-N., Smith, M., Yang, Y.-W., Wu, J.-S., Comput. Phys. Commun. 183, 1225 (2012)CrossRef
HYPRE (2013) , High performance preconditioners, http://www.llnl.gov/CASC/hypre/
Bonnaillie-Noel, V., Dambrine, M., Tordeux, S., Vial, G., Math. Mod. Methods Appl. Sci. 19, 1853 (2009)CrossRef
Davies, A., in IEE Proceedings A: Physical Science, Measurement and Instrumentation, Management and Education, Reviews 133, pp. 217 (1986)
An, T.N., Marode, E., Johnson, P., J. Phys. D: Appl. Phys. 10, 2317 (1977)CrossRef
Davies, A., Evans, J., Marode, E., Segur, P., Simulation studies of the cathode fall and negative glow in helium, in IEE Conference Publication, 1980, 189, pp. 5962Google Scholar
Wormeester, G., Pancheshnyi, S., Luque, A., Nijdam, S., Ebert, U., J. Phys D: Appl. Phys. 43, 505201 (2010)CrossRef
Aleksandrov, N.L., Anokhin, E.M., J. Phys. B: Atomic Molecular Physics 44, 115202 (2011)CrossRef
Bourdon, A., Bonaventura, Z., Celestin, S., Plasma Sources Sci. Technol. 19, 656 (2010)CrossRef
Tran, T.N., Golosnoy, I.O., Lewin, P.L., Georghiou, G.E., J. Phys. D: Appl. Phys. 44, 015203 (2011)CrossRef
Hensel, K., Eur. Phys. J. D 54, 141 (2009)CrossRef
Likhanskii, A., Shneider, M., MacHeret, S., Miles, R., Phys Plasma. 14, 073501 (2007)CrossRef
Unfer, T., Boeuf, J.P., J. Phys. D: Appl. Phys. 42, 194017 (2009)CrossRef
Soloviev, V.R., Krivtsov, V.M., J. Phys. D: Appl. Phys. 42, 125208 (2009)CrossRef
Babaeva, N.Y., Naidis, G.V., J. Phys. D: Appl. Phys. 29, 2423 (1996)CrossRef
Babaeva, N., Naidis, G., IEEE Trans. Plasma Sci. 26, 41 (1998)CrossRef
Kulikovsky, A.A., Phys. Rev. E 57, 7066 (1998)CrossRef