Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:43:34.933Z Has data issue: false hasContentIssue false

Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials

Published online by Cambridge University Press:  06 May 2003

P.-F. Paradis*
Affiliation:
National Space Development Agency of Japan, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba City, Ibaraki, 305-8505, Japan
T. Ishikawa
Affiliation:
National Space Development Agency of Japan, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba City, Ibaraki, 305-8505, Japan
S. Yoda
Affiliation:
National Space Development Agency of Japan, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba City, Ibaraki, 305-8505, Japan
Get access

Abstract

Here is reported a new scheme to accurately determine the vapor pressure of undercooled, liquid, and high temperature solid materials. The method relies on an imaging technique that measures the time variation of the radius of an electrostatically levitated sample. This scheme, compared to other techniques, offers unique opportunity to explore not only the liquid above the melting point but also the undercooled states of highly reactive materials in a contamination free environment. This was exemplified in this paper with titanium. For the first time, we report the vapor pressure $(V_{\rm p})$ of its liquid phase over a large temperature range, covering the undercooled region. Over the 1700 to 2050 K temperature range, it was measured as Log $V_{\rm p}(T) = 9.154 - 17978\ T^{-1}$ (3%). Similarly, for high temperature solid titanium, the vapor pressure could be expressed as Log $V_{\rm p}(T) = 16.634 - 32960\ T^{-1}$ (6%) over the 1770 to 1940 K temperature interval. From these data, the average latent heats of vaporization and sublimation were calculated respectively as 344.8 kJ/kg (8%) and 632.1 kJ/kg (6%) respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th edn., Pergamon Press, Oxford (1979)
T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford 1988)
Carpenter, G., Mair, W.N., Proc. Phys. Soc. B 64, 57 (1951) CrossRef
CRC Handbook of Chemistry and Physics, 78th edn., edited by D.R. Lide, H.P.R. Frederikse (CRC Press, Boca Raton, FL, 1997)
T. Ishikawa, P.-F. Paradis, S. Yoda, 2nd Pan-Pacific Basin Workshop on Microgravity Sciences, TP-1019, Pasadena, CA, May 2001
Paradis, P.-F., Ishikawa, T., Yoda, S., Int. J. Thermophys. 23, 825 (2002) CrossRef
Rhim, W.-K., Chung, S.-K., Barber, D., Man, K.-F., Gutt, G., Rulison, A.A., Spjut, R.E., Rev. Sci. Instrum. 64, 2961 (1993) CrossRef
P.-F. Paradis, T. Ishikawa, S. Yoda, in Proceedings of the First Int'l. Symp. on Microgravity Res. and Appl. in Phys. Sci. and Biotech., Sorrento, Italy, September 2000, ESA SP-454, 993 (2001)
Ishikawa, T., Paradis, P.-F., Yoda, S., Rev. Sci. Instrum. 72, 2490 (2001) CrossRef
Paradis, P.-F., Ishikawa, T., Yoda, S., Space Technol. 22, 81 (2002)
Rhim, W.-K., Ishikawa, T., Rev. Sci. Instrum. 69, 3628 (1998) CrossRef
Rhim, W.-K., Paradis, P.-F., Rev. Sci. Instrum. 70, 4652 (1999) CrossRef
Knudsen, M., Ann. Physik 29, 179 (1909) CrossRef
Knudsen, M., Ann. Physik 28, 75 (1909) CrossRef
Johnston, H.L., Marshall, A.L., J. Am. Chem. Soc. 62, 1382 (1940) CrossRef
Blocher, J.M., Campbell, I.E., J. Am. Chem. Soc. 71, 4040 (1949) CrossRef
Edwards, J.W., Johnston, H.L., Ditmars, W.E., J. Am. Chem. Soc. 75, 2467 (1953) CrossRef
Vinet, B., Magnusson, L., Fredriksson, H., Desré, P.J., J. Colloid Interface Sci. 254, 363 (2002) CrossRef
Paradis, P.-F., Ishikawa, T., Yu, J., Yoda, S., Rev. Sci. Instrum. 72, 2811 (2001) CrossRef