Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:32:36.012Z Has data issue: false hasContentIssue false

Mathematical simulation of one-dimensional dam-collapse flow over wetted bed

Published online by Cambridge University Press:  10 April 2003

D. Medkour*
Affiliation:
Mechanics Institute of Ben Mhidi University, PO Box 358, Oum-El-Bouaghi, 04000, Algeria
M. Kadja
Affiliation:
Mechanics department of Mentouri University, Constantine, 25000, Algeria
Get access

Abstract

A mathematical model is described and applied to simulate sudden total one-dimensional dam-break flow over wetted bed. The dam collapse takes place in a rough sloping non-prismatic channel of various cross-sections. The water parameters to be instantaneously calculated are the height h, the discharge Q, the mean velocity u and the pressure force P. The mentioned flow is governed by the Saint-Venant shallow water equations and the computation process, on the basis of rectangular grid of points, consists of two complementary solutions: (a) at the first instant after the collapse, an analytical procedure is considered. The calculated parameters are taken as initial values in the water stream embraced by the flood wave. Outside this zone, initial conditions are those which preexist before the rupture. (b) Beyond this time, a numerical computation is carried out by using an iterative explicit method of characteristics. (c) Every time stage of calculation starts by determining the discontinuity (wave front) parameters namely its abscissa xδ, height hδ, celerity cδ and alert delay tδ. The former is the discontinuity arrival time at considered station. Typical results are obtained and compared with similar ones already published by others in the literature.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Craya, A., Recherches théorétiques sur l'écoulement de couches superposées de fluides de densités différentes, La houille blanche 4, 4455 (1949)
Faure, J., Nahas, N., La houille blanche 16, 576 (1961) CrossRef
Chervet, A., Dallèves, P., Calcul de l'onde de submersion consécutive à la rupture d'un barrage, Schweiz. Bauzg., 88 Jahrgang, Heft 19, 420 (1970)
A. Preissman, Difficultés rencontrées dans le calcul des ondes de translation à fond raide, in Proceedings of the I.A.H.R. 2nd congres, Leningrad, 1965
Ritter, A., Proc. Z. Ver. Deutsch. Ing. 36, 947 (1892)
Dressler, R.F., Proc. I.A.S.H. 3, 319 (1954)
Whitham, G.B., Proc. Roy. Soc. London 20, 399 (1955) CrossRef
J.J. Stoker, Water waves. The mathematical theory with applications (Interscience publishers, New York, 1957)
Cunge, J.A., La houille blanche 96, 23 (1970)
Rajar, R., J. Hydraul. Div. ASCE 104, 1011 (1978)
Hoang Quoc, On, Tran Gia Lich, La houille blanche 116, 433 (1990) CrossRef
D. Medkour, Interaction des ondes de choc dans un écoulement supersonique et instationnaire, Magister thesis, University Mentouri of Constantine, Algeria, 1992
D. Medkour, Étude de l'onde de submersion engendrée par la rupture d'un barrage, Doctorate thesis, in preparation
W.H. Graf, M.S. Altinakar, Hydraulique fluviale (Presses polytechniques et universitaires romandes, Rome, 1996), Vol. 2
M. Hug, Mécanique des fluides appliquée (Eyrolles, Paris, 1975), pp. 295-377
Yen, B.C., J. Eng. Mech. Div. ASCE 99, 979 (1973)
R. Courant, D. Hilbert, Methods of mathematical physics (Science publishers, New York, 1962), pp. 149-202
F.T. Eleuterio, Shock-capturing methods for free-surface shallow flows (Wiley, 2001)
Price, R.K., J. Hydraul. Div. ASCE 100, 879 (1974)
Terzidis, G., Strelkoff, T., J. Hydraul. Div. ASCE 96, 2581 (1970)
S. Godounov, V. Riabenki, Schémas aux différences (O.P.U., Alger, 1987)
Stansby, P.K., Chegini, A., Barnes, T, J. Fluid Mech. Camb. Univ. Press 370, 203 (1998) CrossRef
G.B. Whitham, Linear and non-linear waves (Wiley, 1978)
E.H. Lewitt, Hydraulics and fluid mechanics (Sir Issac Pitman and Sons, London, 1923), pp. 251-262
Balloffet, A., et al., J. Hydraul. Div. ASCE 100, 645 (1974)