Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:38:50.408Z Has data issue: false hasContentIssue false

Improved and delayed radiative emission response of Eu-doped BaTiO3 nanoscale system

Published online by Cambridge University Press:  11 July 2012

M. Borah
Affiliation:
Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, Tezpur-784 028, Assam, India
D. Mohanta*
Affiliation:
Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, Tezpur-784 028, Assam, India
D. Sanyal
Affiliation:
Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata-700 064, India
M. Chakrabarti
Affiliation:
Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700 009, India
D. Jana*
Affiliation:
Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700 009, India
Get access

Abstract

We report on the structural, spectroscopic and radiative emission characteristics of Eu-doped BaTiO3 (BT) nanosystem as compared to the pure BT system. The structural analysis was performed by X-ray diffraction (XRD) studies where the nanoscale BT sample exhibits a perovskite structure with most intense peak along (1 1 0) plane that depicts the preferred crystallographic orientation. Also, the diffraction peak intensity was found to be suppressed for Eu-doped BT nanosystem. The nature of radiative emission was evaluated via steady-state photoluminescence spectroscopy (PL) and positron annihilation spectroscopy (PAS). The improved radiative emission response, with Eu2+ doping, was believed to be accompanied by 4f65d→4f7 transitions in case of Eu-doped BT system. Whereas, PAS lifetime study of doped sample has revealed longer lifetimes indicating thereby partial substitution of Ti4+ by Eu2+ in BaTiO3 system.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexe, M., Harnagea, C., Visinoiu, A., Pignolet, A., Hesse, D., Gösele, U., Scr. Mater. 44, 1175 (2001)CrossRef
Kishi, H., Mizuno, Y., Chazono, H., Jpn J. Appl. Phys. 42, 1 (2003)CrossRef
Muralt, P., J. Micromech. Microeng. 10, 136 (2000)CrossRef
Barik, P., Kundu, T.K., Ram, S., Philos. Mag. Lett 89, 545 (2009)CrossRef
Forsbergh, P.W. Jr., Phys. Rev. 76, 1187 (1949)CrossRef
Roy, A.C., Mohanta, D., Scr. Mater. 61, 891 (2009)CrossRef
Kareiva, A., Tautkus, S., Rapalaviciute, R., JǾrgensen, J.E., Lundtoft, B., J. Mater. Sci. 34, 4853 (1999)CrossRef
Fang, T.T., Wu, M., Tsai, J.D., J. Am. Ceram. Soc. 85, 2984 (2002)CrossRef
Maison, W., Kleeberg, R., Heimann, R.B., Phanichphant, S., J. Eur. Ceram. Soc. 23, 127 (2003)CrossRef
Langhammer, H.T., Müller, T., Böttcher, R., Abicht, H.-P., J. Phys.: Condens. Matter 20, 085206 (2008)
Wang, X., Gu, M., Yang, B., Zhu, S., Cao, W., Microelectron. Eng. 66, 855 (2003)CrossRef
Langhammer, H.T., Müller, T., Felgner, K.-H., Abicht, H.-P., J. Am. Ceram. Soc. 83, 605 (2000)CrossRef
Ray, S., Kolen’ko, Y.V., Kovnir, K.A., Lebedev, O.I., Turner, S., Chakraborty, T., Erni, R., Watanabe, T., Tendeloo, G.V., Yoshimura, M., Itoh, M., Nanotechnology 23, 025702 (2012)CrossRef
Glinchuk, M.D., Bykov, I.P., Kornienko, S.M., Laguta, V.V., Spenyuk, A.M., Bilous, A.G., V’yunov, O.I., Yanchevskii, O.Z., J. Mater. Chem. 10, 941 (2000)CrossRef
Beauger, A., Mutin, J., Niepce, J., J. Mater. Sci. 18, 3041 (1983)CrossRef
Balboul, B.A.A., Zaki, M.I., J. Anal. Appl. Pyrolysis 92, 137 (2011)CrossRef
Li, J., Kuwabara, M., Sci. Technol. Adv. Mater. 4, 143 (2003)CrossRef
Mangalam, R.V.K., Chakrabrati, M., Sanyal, D., Chakrabarti, A., Sundaresan, A., J. Phys.: Condens. Matter 21, 445902 (2009)
Kirkegaard, P., Pedersen, N.J., Eldroup, M. (Riso-M2740), Report of Riso National Lab, Roskilde, Denmark, 1989Google Scholar
Zhang, W., Chen, L., Jin, C., Deng, X., Wang, X., Li, L., J. Electroceramics 21, 859 (2008)CrossRef
Wu, M., Long, J., Wang, G., Huang, A., Luo, Y., J. Am. Ceram. Soc. 82, 3254 (1999)CrossRef
Lu, D.Y., Toda, M., Sugano, M., J. Am. Ceram. Soc. 89, 3112 (2006)CrossRef
Lu, D.Y., Sugano, M., Su, W.H., Koda, T., Cryst. Res. Technol. 40, 703 (2005)CrossRef
Mattheiss, L.F., Phys. Rev. B 6, 4718 (1992)CrossRef
Eglitisa, R.I., Trepakov, V.A., Kapphan, S.E., Borstel, G., Solid State Commun. 126, 301 (2003)CrossRef
Cho, W.S., Hamada, E., J Alloys Compd. 268, 78 (1998)CrossRef
Smedskjaer, M.M., Qiu, J., Wang, J., Yue, Y., Appl. Phys. Lett. 98, 071911 (2011)CrossRef
Zhang, X., Zhang, J., Huang, J., Tang, X., Gong, M., J. Lumin. 130, 554 (2010)CrossRef