Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:36:10.173Z Has data issue: false hasContentIssue false

Groove dimensioning using remote field eddy current inspection*

Published online by Cambridge University Press:  15 September 2000

M.-E. Davoust*
Affiliation:
Measurement Department, École Supérieure d'Électricité, Plateau du Moulon, 91192 Gif-sur-Yvette, France
G. Fleury
Affiliation:
Measurement Department, École Supérieure d'Électricité, Plateau du Moulon, 91192 Gif-sur-Yvette, France
Get access

Abstract

The remote field eddy current technique is used fordimensioning the grooves that may occur in the ferromagnetic pipes. Wepropose a method to estimate the depth and the length of corrosiongrooves from measurement of a pick-up coil signal phase atdifferent positions close to the defect. Groove dimensioningrequiresthe knowledge of the physical relation between measurements anddefect dimensions; therefore finite-element calculations areperformed to design parametric algebraic functions for modeling thephysical phenomena. Different models are possible; the choiceof this algebraic function is discussed from identification criteria. By means of new measurement formalism and twopreviously defined measurement relations, estimates of groovesizes may be given. In the first approach, algebraic function parameters andgroove dimensions are linked through a polynomial function; this approach is proved to bebetter than a second one which tries to take advantage of more physical considerations.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work has been presented at NUMELEC 2000.

References

S. Brahim-Belhouari, G. Fleury, Probability distribution in nonlinear estimation-a measurement dedicated approach, in SSAP'98, Portland, USA, 1998, pp. 395-398.
S. Brahim-Belhouari, M. Kieffer, G. Fleury, L. Jaulin, E. Walter, Model selection via worst case criterion for non-linear bounded-error estimation with measurement application, in IMTC'99, Venise, Italy, Vol. 2, 1999, pp. 1075-1080.
Clarke, G.P.Y., J. Am. Stat. Assoc. 82, 844 (1987). CrossRef
Davoust, M.-E., Fleury, G., Res. Nondestructive Eval. 11, 39 (1999). CrossRef
Djuric, P.M., IEEE Trans. Signal Process. 44, 1744 (1996). CrossRef
Dodd, C.V., Deeds, W.E., Luquire, J.W., Int. J. Non Destructive Testing 1, 29 (1969).
Faur, M., Morisseau, P., Oksman, J., Paradis, L., Rev. Prog. Quantitative Non Destructive Eval. 17A, 815 (1998). CrossRef
Faur, M., Ph, O. Roy. Benoist, J. Oksman, P. Morisseau, Rev. Prog. Quantitative Non Destructive Eval. 16, 67 (1997). CrossRef
G. Fleury, Sens. and Actuators A 46; 47, 364 (1995).
Keramat, M., J. Analog Integrated Circuits and Signal Process. 14, 131 (1997). CrossRef
Mackintosh, D.D., Atherton, D.L., Schmidt, T.R., Russel, D.E., Mat. Eval. 54, 652 (1996).
More, J.J., Lect. Notes in Math. 630, 105 (1977). CrossRef
A.Pazman, Nonlinear Statistical Models (Kluwer Academic Publishers, 1993).
Sandu, L., Oksman, J., Fleury, G., IEEE Trans. Instrum. and Meas. 47, 920 (1998). CrossRef
Schmidt, T.R., Mat. Eval. 42, 225 (1984).
Smith, A., G.Roberts, J. Roy. Statist. Soc. Ser. B 55, 3 (1993).
J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, 1980).