Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T22:38:10.828Z Has data issue: false hasContentIssue false

Effects of substrates on the crystal structure, texturing and optical properties of AlN coatings deposited by inverted cylindrical magnetron sputtering

Published online by Cambridge University Press:  08 October 2012

A. Khanna*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab, India
D.G. Bhat
Affiliation:
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR-72701, USA
*
Get access

Abstract

AlN films of thicknesses 670–780 nm were deposited on (1 1 1) silicon wafer, (0 0·1) sapphire, float glass and fused silica substrates by reactive mid-frequency (41 kHz) ac sputtering of dual hollow Al targets in a mixture of Ar and N2 gases. Nanostructured films of hexagonal wurtizite phase of AlN were prepared and characterized by UV-visible spectroscopy and X-ray diffraction. The novel geometry of dual target inverted cylindrical magnetrons produces very dense plasma and ion bombardment of the growing film, and facilitates the formation of highly crystalline AlN coatings without any deliberate substrate heating. Substrates showed significant influence on the crystal structure of AlN films; sapphire forms hexagonal AlN phase with very strong texturing toward (0 0·2) crystallographic orientation, silicon wafer grows small amount of metastable high-pressure cubic phase of AlN along with the predominant, thermodynamically stable hexagonal phase while the amorphous glass substrates form hexagonal AlN phase with a random orientation of the crystallites.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992)CrossRef
Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998)CrossRef
Orton, J.W., Foxon, C.T., Rep. Prog. Phys. 61, 1 (1998)CrossRef
Specht, P., Armitage, R., Ho, J., Gunawan, E., Yang, Q., Xu, X., Kisielowski, C., Weber, E.R., J. Cryst. Growth 269, 111 (2004)CrossRef
Taniyasu, Y., Kasu, M., Makimoto, T., Nature 441, 325 (2006)CrossRef
Engelmark, F., Iriarte, G.F., Katardjiev, I.V., Ottosson, M., Muralt, P., Berg, S., J. Vac. Sci. Technol. A 19, 2664 (2001)CrossRef
Tondare, V.N., Balasubramanian, C., Shende, S.V., Joag, D.S., Godbole, V.P., Bhoraskar, S.V., Bhadbhade, M., Appl. Phys. Lett. 80, 4813 (2002)CrossRef
Kubota, K., Kobayashi, Y., Fujimoto, K., J. Appl. Phys. 66, 2984 (1989)CrossRef
Gherasoiu, I., Nikishin, S., Kipshidze, G., Borisov, B., Chandolu, A., Ramkumar, C., Holtz, M., Temkin, H., J. Appl. Phys. 96, 6272 (2004)CrossRef
Wang, C.C., Lu, C.J., Shiao, M.H., Shieu, F.S., J. Vac. Sci. Technol. A 23, 621 (2005)CrossRef
Ekpe, S.D., Jimenez, F.J., Dew, S.K., J. Vac. Sci. Technol. A 28, 1210 (2010)CrossRef
Aubert, T., Assouar, M.B., Legrani, O., Elmazria, O., Tusan, C., Robert, S., J. Vac. Sci. Technol. A 29, 021010 (2011)CrossRef
Vispute, R.D., Narayan, J., Wu, H., Jagannadham, K., J. Appl. Phys. 77, 4724 (1995)CrossRef
Li, X., Tansley, T.L., J. Appl. Phys. 68, 5389 (1990)
Alveli, M., Ozgit, C., Donmez, I., Biyikli, N., J. Vac. Sci. Technol. A 30, 021506 (2012)CrossRef
Khanna, A., Bhat, D.G., J. Vac. Sci. Technol. A 25, 557 (2007)CrossRef
Clement, M., Iborra, E., Sangrador, J., Sanz-Hervas, A., Vergara, L., Aguilar, M., J. Appl. Phys. 94, 1495 (2003)CrossRef
Ohuchi, F.S., Russell, P.E., J. Vac. Sci. Technol. A 5, 1630 (1987)CrossRef
Kao, H.L., Shih, P.J., Lai, C.-H., Jpn J. Appl. Phys. 38, 1526 (1999)CrossRef
Six, S., Gerlach, J.W., Rauschenbach, B., Thin Solid Films 370, 1 (2000)CrossRef
Tungasmita, S., Birch, J., Persson, P.O.A., Järrendahl, K., Hultman, L., Appl. Phys. Lett. 76, 170 (2000)CrossRef
Auner, G.W., Jin, F., Naik, V.M., Naik, R., J. Appl. Phys. 85, 7879 (1999)CrossRef
Iriarte, G.F., Engelmark, F., Katardjiev, I.V., J. Mater. Res. 17, 1469 (2002)CrossRef
Aita, C.R., J. Appl. Phys. 53, 1807 (1982)CrossRef
Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983)CrossRef
ICDD, Powder Diffraction File No. 25-1133 (ICDD, Newtown Square, PA, USA)
Pastrňnak, J., Roskovcová, L., Phys. Stat. Sol. 14, K5 (1966)CrossRef
Zhao, Y., Zhu, C., Wang, S., Tian, J.Z., Yang, D.J., Chen, C.K., Cheng, H., Hing, P., J. Appl. Phys. 96, 4563 (2004)CrossRef
Perry, P.B., Rutz, R.F., Appl. Phys. Lett. 33, 319 (1978)CrossRef
Muhil, S., Zapein, J.A., Mendez, J.M., Andrade, E., J. Phys. D: Appl. Phys. 30, 2147 (1997)CrossRef
ICDD, Powder Diffraction File No. 46-1200 (ICDD, Newtown Square, PA, USA)
ICDD, Powder Diffraction File No. 25-1495 (ICCD, Newtown Square, PA, USA)
Thompson, M.P., Auner, G.W., Zheleva, T.S., Jones, K.A., Simko, S.J., Hilfiker, J.N., J. Appl. Phys. 89, 3331 (2001)CrossRef
Cai, W.X., Kang, L., Wu, P.H., Yang, S.Z., Ji, Z.M., Supercond. Sci. Technol. 15, 1781 (2002)CrossRef
Cloud, A.N., Aryasomayajula, A., Bhat, D.G., Gordon, M.H., Surf. Coat. Technol. 202, 1564 (2008)CrossRef