Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T20:42:51.336Z Has data issue: false hasContentIssue false

Effect of the hydrogen dilution on the local microstructure in hydrogenated amorphous silicon films deposited by radiofrequency magnetron sputtering

Published online by Cambridge University Press:  15 June 2000

M. Daouahi
Affiliation:
Faculté des Sciences de Bizerte, Zarzouna, Bizerte, Tunisia
K. Zellama*
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d'Amiens, 33 rue Saint-Leu, 80039 Amiens Cedex, France
H. Bouchriha
Affiliation:
Faculté des Sciences de Tunis, Campus Universitaire Elmenzeh, 1060 Tunis, Tunisia
P. Elkaïm
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place Aristide Briand, 92195 Meudon Cedex, France
Get access

Abstract

The nature of the hydrogen bonding and content and their influence on the film microstructure have been investigated in detail, as a function of the H2 dilution and the residual pressure, in hydrogenated amorphous silicon (a-Si:H) films prepared by radiofrequency (rf) magnetron sputtering at a common substrate temperature (~ 250 °C) and pressure (5 × 10−4 torr) and high rates (11−15 Å/s). H2 percentages in the gas phase mixture (Ar + % H2) of 5, 10, 15 and 20% have been introduced during growth. For the 20% of H2, two different pressures of 5 × 10−4 and 50 × 10−4 torr were used. A combination of infrared absorption, optical transmission and elastic recoil detection analysis experiments have been carried out to fully characterize the samples in their as-deposited state. The results clearly indicate that for H2 percentage equal to or lower than 15% , the total bonded H content in the films increases as the H2 percentage increases, and then reaches a saturation value or even decreases for higher H2 percentage. Moreover, the microstructure is also found to be deeply affected by the H2 dilution and pressure. In particular, for high H2 percentage (20%) and high pressure (50 × 10−4 torr), unbounded H as well as polyhydride (Si-H2)n chains, possibly located in structural inhomogeneities such as voids, are also present in the films in addition to the isolated monohydride Si-H and polyhydride Si-H2 complexes. As a result, a reduction of the compactness of the film structure associated with a decrease of the refractive index n is observed. The optical gap is found to be rather controlled by the total bonded hydrogen content. The lowest proportion of isolated polyhydride Si-H2 complexes and the highest density are observed for films deposited with 10% of H2 in the gas phase and a pressure of 5 × 10−4 torr.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

See for example, semi-conductors and semi-metals, edited by P.K. Willardson, A.C. Beer (Academic, New-York, 1984), Vol. 21.
Roca, P. i cabarrocas, J.B. Chévrier, J. Huc, A. Lloret, J.Y. Parey, J.P.M. Schmitt, J. Vac. Sci. Technol. A 9, 233 (1991).
Viturro, R.E., Weiser, K., Philos. Mag. B 53, 93 (1986). CrossRef
Maley, N., Lannin, J.S., Phys. Rev. B 36, 1146 (1978). CrossRef
Kaplan, D., Sol, N., Velasco, G., Appl. Phys. Lett. 33, 440 (1978). CrossRef
Onoshi, M., Nishiwaki, H., Enamoto, K., Nakashima, Y., Tsuda, S., Takahama, T., Tarui, H., Tanaka, M., Dajo, H., Kuwano, Y., J. Non Cryst. Solids 59-60, 1107 (1983). CrossRef
Brodsky, M.H., Cardona, M., Cuomo, J.J., Phys. Rev. B 16, 3556 (1977). CrossRef
McMillan, J.A., Peterson, E.M., Thin Solid Films 63, 189 (1979). CrossRef
Knights, J.C., Lucovky, G., Nemanich, R.J., Philos. Mag. B 37, 467 (1978). CrossRef
G. Lucovky, R.J. Nemanich, J.C. Knights, Phys. Rev B 19, 43; 2064 (1980).
Zellama, K., Labidi, H., Germain, P., von Bardeleben, J.H., Chahed, L., Thèye, M.L., Roca, P. i Cabarrocas, C. Godet, J.P. Stoquert, Phys. Rev B 45, 13314 (1992). CrossRef
Zellama, K., Chahed, L., Sladek, P., Thèye, M.L., von Bardeleben, J.H., Roca, P. i Cabarrocas, Phys. Rev. B 53, 3804 (1996). CrossRef
Rüther, R., Livingstone, J., Thin Solid Films 251, 30 (1994). CrossRef
Matolis, M.K., Greeves, D.W., J. Appl. Phys. 63, 260 (1988).
Touir, H., Dixmier, J., Zellama, K., Morhange, J.F., Elkaïm, P., J. Non Cryst. Solids 227-230, 906 (1998). CrossRef
Manfredotti, C., Fizzotti, F., Boero, M., Pastorino, P., Polesello, P., Vittone, E., Phys. Rev. B 50, 18046 (1994). CrossRef
Zellama, K., Labidi, H., Germain, P., Lortigues, D., Chahed, L., Thèye, M.L., Besi, U., Coscia, U., Fameli, G., Menna, P., Roca, P. i Cabarrocas, C. Godet, Thin Solid Films 204, 385 (1991). CrossRef
Jousse, D., Saïd, J., Stoquert, J.P., Thin Solid Films 124, 191 (1985). CrossRef
Cuniot, M., Dixmier, J., Elkaïm, P., J. Non Cryst. Solids 164-166, 99 (1993). CrossRef
Lusson, L., Lusson, A., Elkaïm, P., Dixmier, J., Ballutaud, D., J. Appl. Phys. 81, 3073 (1997). CrossRef
Touir, H., Zellama, K., Morhange, J.F., Phys. Rev. B 59, 10076 (1999). CrossRef
Y. Bouizem, Ph.D. thesis, Université Pierre et Marie Curie, Paris VI, France, 1992.
Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., Maley, N., Phys. Rev. B 45, 13367 (1992). CrossRef
Roca, P. i cabarrocas, Z. Djebbour, J.P. Kleider, C. Longeaud, D. Mencaraglia, J. Sib, Y. Bouizem, M.L. Thèye, J. Sardin, J.P. Stoqueret, J. Phys. France I2, 1979 (1992).
E. Bardet, Ph.D. thesis, Etude du silicium polycristallin en couche mince obtenu à partir du silicium amorphe déposé par pulvérisation cathodique magnétron. Application à la réalisation de dispositifs photovoltaïques, Université de Paris VII, 19 décembre, France, 1997.
Jones, S.J., Chen, Y., Williamson, D.L., Kroll, U., Roca, P. i Cabarrocas, J. Non Cryst. Solids 164-166, 131 (1993). CrossRef
Beyer, W., Wagner, H., J. Non Cryst. Solids 59-60, 161 (1983). CrossRef
Pinarbasi, M., Maley, N., Meyers, A., Abelson, J.R., Thin Solid Films 171, 217 (1989). CrossRef
Acco, S., Williamson, D.L., Stolk, P.A., Saris, F.W., Van den Boogaard, M.J., Snike, W.C., Van der Weg, W.F., Roorda, S., Zalm, P.C., Phys. Rev. B 53, 4415 (1996). CrossRef
R. Rüther, J. Livingstone, N. Dytlewski, D. Cohen, Phys. Stat. Sol. A 144, K 37 (1994).
Y. Chen, S.J. Jones, D.L. Williamson, S. Yang, N. Maley, J.R. Abelson, in Amorphous Silicon Technology-1992, MRS Symposia Proceedings No. 258, edited by M.J. Thompson, Y. Hamakawa, P.G. Lecomber, A. Madan, E.A. Schiff (Materials Research Society, Pittsburgh, 1992).
Pollard, W.B., Lukovsky, G., Phys. Rev. B 26, 3172 (1982). CrossRef
Shanks, H., Jeffrey, F.R., Lowry, M.E., J. Phys. C 4, 773 (1981).
Shanks, H., Frang, C.J., Ley, L., Cardona, M., Phys. Stat. Sol. B 100, 403 (1980). CrossRef
Chen, Y.F., Solid State Commun. 71, 1127 (1989). CrossRef
Gleason, K.K., Petrich, M.A., Reimer, J.A., Phys. Rev. B 36, 3259 (1987). CrossRef
Roca, P. i Cabarrocas, Appl. Phys. Lett. 65, 1874 (1994).
Beyer, W., J. Non Cryst. Solids 198-200, 40 (1996); Phys. Stat. Sol. A 159, 53 (1997). CrossRef
Acco, S., Beyer, W., Van Faassen, E.E., Van der Weg, W.F., J. Appl. Phys. 82, 2862 (1997). CrossRef
Beldi, N., Sib, J., Chahed, L., Smaïl, T., Mohamed Brahim, T., Djebbour, Z., Kleider, J.P., Longeaud, C., Mencanaglia, D., J. Non Cryst. Solids 164-166, 309 (1993). CrossRef
Lucovsky, G., Parsons, G.N., Wang, C., Davidson, B.N., Tsu, D.V., Solar cells 27, 122 (1989). CrossRef
Mahan, A., Williamson, D.L., Nelson, B.P., Grandall, R.S., Solar Cells 27, 465 (1989). CrossRef
Darwich, R., Roca, P. i Cabarrocas, S. Vallon, R. Ossikovski, P. Morin, K. Zellama, Philos. Mag. B 72, 363 (1995). CrossRef
Zellama, K., Nedialkova, L., Bounouh, Y., Chahed, L., Benlahsen, M., Zeinert, A., Paret, V., Thèye, M.L., J. Non Cryst. Solids 198-200, 81 (1996). CrossRef
Severens, R.J., Brussaard, G.J.H., van de Sanden, M.C.M., Schram, D.C., Appl. Phys. Lett. 67, 491 (1995). CrossRef
Rüther, R., Livingstone, J., Thin Solid Films 226, 59 (1993). CrossRef
Oguz, S., Anderson, D.A., Paul, W., Stein, H.J., Phys. Rev. B 22, 88 (1980).