Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:09:28.285Z Has data issue: false hasContentIssue false

The application of laser-induced damage spot size effect for laser conditioning mechanism

Published online by Cambridge University Press:  17 August 2012

X. Li*
Affiliation:
School of Science, Beijing University of Chemical Technology, 100029, Beijing, P.R. China
L.-B. Kong
Affiliation:
School of Science, Beijing University of Chemical Technology, 100029, Beijing, P.R. China
Z.-L. Hou
Affiliation:
School of Science, Beijing University of Chemical Technology, 100029, Beijing, P.R. China
J.-D. Shao
Affiliation:
Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P.R. China
*
Get access

Abstract

We propose the spot-size effect in laser-induced damage to optical thin films as a method to investigate the defect removal model which is one of the laser conditioning mechanisms, and the theoretical and experimental studies are presented. A standard deviation σ2 is set up for fitting the damage thresholds which are obtained by multi-spot size test. The laser conditioning effect on ZrO2/SiO2 multilayer high reflective films is analyzed through this application. It is found that the mean distance of two initiating defects is increased by laser conditioning, which means that the defect density is decreased. Thus, the initiating defects are removed partially by laser conditioning. Furthermore, the intrinsic damage threshold of the film is little affected through the laser conditioning process.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wolfe, C.R., Kozlowski, M.R., Cambell, J.H., Rainer, F., Proc. SPIE 1438, 360 (1989)
Kozlowski, M.R., Wolfe, C.R., Staggs, M.C., Cambell, J.H., Proc. SPIE 1438, 376 (1989)
Kozlowski, M.R., Staggs, M.C., Rainer, F., Stathis, J., Proc. SPIE 1441, 269 (1990)CrossRef
Sheehan, L., Kozlowski, M.R., Rainer, F., Staggs, M.C., Proc. SPIE 2114, 559 (1993)CrossRef
Eva, E., Mann, K., Kaiser, N., Anton, B., Henking, R., Ristau, D., Weissbrodt, P., Mademann, D., Raupch, L., Hacher, E., Appl. Opt. 35, 5613 (1996)CrossRef
Fan, Z.-X., Zhao, Q., Qiu, H., Fan, R.-Y., Proc. SPIE 3244, 469 (1998)CrossRef
Frink, M.E., Arenberg, J.W., Mordaunt, D.W., Seitel, S.C., Babb, M.T., Teppo, E.A., Appl. Phys. Lett. 51, 415 (1987)CrossRef
Temple, P.A., Lowdermilk, W.H., Milam, D., Kennedy, G., Appl. Opt. 21, 3249 (1982)CrossRef
Bloembergeb, N., Appl. Opt. 12, 661 (1972)CrossRef
Deshazer, L.G., Newnam, B.E., Leung, K.M., Appl. Phys. Lett. 23, 607 (1973)CrossRef
Kozlowski, M.R., Chow, R., Proc. SPIE 2114, 640 (1994)CrossRef
Dijon, J., Poiroux, T., Desrumaux, C., Proc. SPIE 2966, 315 (1997)CrossRef
Hue, J., Ravel, G., Dijon, J., Garrec, P., Proc. SPIE 3578, 347 (1998)CrossRef
Capoulade, J., Gallais, L., Natoli, J.Y., Commandré, M., Appl. Opt. 47, 5272 (2008)CrossRef
Li, X., Liu, X.F., Zhao, Y.A., Shao, J.D., Fan, Z.X., Chin. Opt. Lett. 8, 598 (2010)
ISO standard 11254-1, Lasers and laser-related equipment – Determination of laser-induced damage threshold of optical surfaces, Part 1: 1-on-1 test, 2002
Zhao, Y., Wang, T., Zhang, D., Shao, J., Fan, Z., Appl. Surf. Sci. 245, 335 (2005)CrossRef