Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:22:35.618Z Has data issue: false hasContentIssue false

An efficient continuum model for CNTs-based bio-sensors

Published online by Cambridge University Press:  16 July 2012

P. Soltani*
Affiliation:
Department of Mechanical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
O. Pashaei Narenjbon
Affiliation:
Department of Mechanical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
M.M. Taherian
Affiliation:
Young Researchers Club, Semnan Branch, Islamic Azad University, Semnan, Iran
A. Farshidianfar
Affiliation:
Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
*
Get access

Abstract

The present paper proposes a new equation utilizing the nonlocal Euler-Bernoulli beam model to investigate the linear transverse vibration of an embedded single-walled carbon nanotube (SWCNT) which incorporates an extra-added nanoparticle. The elastic behavior of the surrounding medium is simulated by the Pasternak-type foundation model. Hamilton’s principle is applied to derive the governing equation, and the natural frequencies are obtained by the Galerkin method. The numerical results are compared with the molecular dynamics (MD) simulation as well as with the local continuum approach in the previous literature, to validate the nonlocal continuum elastic model. Unlike the classical continuum model, the present new approach shows acceptable accuracy and good agreement to the MD approximation. The results indicate that the fundamental frequencies are significantly dependent on the attached mass and boundary conditions. To study the effects of supported end conditions, three typical boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are simulated. It is found that an attached mass causes a noticeable reduction in natural frequencies, in particular, for the clamped-clamped boundary condition, a stiff medium, stocky SWCNT and a small nonlocal parameter. In addition, when the position of the added nanoparticle is closer to the middle point of SWCNT length, the mass sensitivity is increased. Detailed results demonstrate that the present equation-based nonlocal continuum theory can be utilized for SWCNT-based mass sensor, efficiently.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Che, G., Lakshmi, B.B., Fisher, E.R., Martin, C.R., Nature 393, 346 (1998)
Ebbesen, T., Carbon Nanotubes: Preparation and Properties (CRC Press, New York, 1997)Google Scholar
Fang, S.-C., Chang, W.-J., Wang, Y.-H., Phys. Lett. A 371, 499 (2007)CrossRef
Garg, A., Sinnott, S.B., Chem. Phys. Lett. 295, 273 (1998)CrossRef
Thostenson, E.T., Ren, Z., Chou, T.-W., Chem. Phys. Lett. 61, 1899 (2001)
Gu, L., Elkin, T., Jiang, X., Li, H., Lin, Y., Qu, L., Tzeng, T.-R.J., Joseph, R., Sun, Y.-P., Chem. Commun. 7, 874 (2005)CrossRef
Lin, Y., Taylor, S., Li, H., Fernando, K.A.S., Qu, L., Wang, W., Gu, L., Zhou, B., Sun, Y.-P., J. Mater. Chem. 14, 527 (2004)CrossRef
Li, C., Chou, T.-W., Phys. Rev. B 68, 073405 (2003)CrossRef
Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M., Science 284, 1340 (1999)CrossRef
Lacerda, L., Raffa, S., Prato, M., Bianco, A., Kostarelos, K., Nano Today 2, 38 (2007)CrossRef
Prato, M., Kostarelos, K., Bianco, A., Acc. Chem. Res. 41, 60 (2007)CrossRef
Yogeswaran, U., Chen, S.-M., Sensors 8, 290 (2008)CrossRefPubMed
Davis, J.J., Green, M.L.H., Allen, H., Hill, O., Leung, Y.C., Sadler, P.J., Sloan, J., Xavier, A.V., Chi Tsang, S., Inorg. Chem. Acta 272, 261 (1998)CrossRef
Mattson, M., Haddon, R., Rao, A., J. Mol. Neurosci. 14, 175 (2000)CrossRef
Tsang, S.C., Davis, J.J., Green, M.L.H., Hill, H.A.O., Leung, Y.C., Sadler, P.J., J. Chem. Soc. Chem. Commun. 272, 1803 (1995)CrossRef
Lu, F., Gu, L., Meziani, M.J., Wang, X., Luo, P.G., Veca, L.M., Cao, L., Sun, Y.-P., Adv. Mat. 21, 139 (2009)CrossRef
Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M., Nature 394, 52 (1998)
Chowdhury, R., Adhikari, S., Mitchell, J., Phys. E: Low-Dimens. Syst. Nanostruct. 42, 104 (2009)CrossRef
Jensen, K., Kim, K., Zettl, A., Nature Nanotechnol. 3, 533 (2008)CrossRef
Murmu, T., Pradhan, S.C., Phys. E: Low-Dimens. Syst. Nanostruct. 41, 1232 (2009)CrossRef
Wang, L., Ni, Q., Comput. Mater. Sci. 43, 399 (2008)CrossRef
Dendzik, Z., Kosmider, M., Skrzypek, M., Gburski, Z., J. Mol. Struct. 704, 203 (2004)CrossRef
Won Kang, J., Kim, K.-S., Ryang Byun, K., Kang, E.-S., Lee, J., Kuen Kwon, O., Gyu Choi, Y., Hwang, H.J., Phys. E: Low-Dimens. Syst. Nanostruct. 42, 1995 (2010)CrossRef
Georgantzinos, S.K., Anifantis, N.K., Phys. E: Low-Dimens. Syst. Nanostruct. 42, 1795 (2010)CrossRef
Arash, B., Wang, Q., Varadan, V.K., J. Nanotechnol. Eng. Med. 2, 021010 (2011)CrossRef
Joshi, A.Y., Harsha, S.P., Sharma, S.C., Phys. E: Low-Dimens. Syst. Nanostruct. 42, 2115 (2010)CrossRef
Mehdipour, I., Barari, A., Domairry, G., Comput. Mater. Sci. 50, 1830 (2011)CrossRef
Murmu, T., Adhikari, S., Mech. Res. Commun. 38, 62 (2011)CrossRef
Murmu, T., Adhikari, S., Sens. Actuators A Phys. (2011)
Aydogdu, M., Filiz, S., Phys. E: Low-Dimens. Syst. Nanostruct. 43, (2011)CrossRef
Simsek, M., Phys. E: Low-Dimens. Syst. Nanostruct. 43, 182 (2010)CrossRef
Eringen, A.C., J. Appl. Phys. 54, 4703 (1983)CrossRef
Rao, S., Vibration of Continuous Systems (Wiley, Hoboken, New Jersey, 2007)Google Scholar
Gupta, S.S., Bosco, F.G., Batra, R.C., Comput. Mater. Sci. 47, 1049 (2010)CrossRef