Published online by Cambridge University Press: 08 October 2012
This paper studies the usage of earthed atomizing corona discharge to dispose waste water from oil extraction. The I-V characteristic curves of earthed atomizing positive and negative corona discharge are compared to study the influence of water flux and inter-electrode distance (which refers to the distance between line electrode and plate electrodes) on discharge characteristics, and to measure the turbidity, pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and the variation tendency of BOD5/COD in the process of dealing with waste water from oil extraction by earthed atomizing corona discharge. Ultimately, the mechanism of earthed atomizing corona discharge is analyzed. Research results indicate that when using earthed atomizing corona discharge to dispose of waste water from oil extraction, as the processing time grows there is a maximum value of turbidity, the pH level increases gradually then stabilizes, COD appears to descend, and BOD5 as well as BOD5/COD both have minimum values. When the processing time attains 300 min, waste water from oil extraction is suitable for biochemical treatment, foreshadowing that earthed atomizing corona discharge technology demonstrates energy conservation characteristic in improving the biodegradability of waste water from oil extraction and has a brilliant application prospect waiting ahead.