Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:36:31.815Z Has data issue: false hasContentIssue false

Predictive model of a DBD lamp for power supply design and method for the automatic identification of its parameters

Published online by Cambridge University Press:  24 January 2007

R. Díez*
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique Industrielle, Unité Mixte de Recherche INPT-ENSEEIHT/CNRS, 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
J.-P. Salanne
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique Industrielle, Unité Mixte de Recherche INPT-ENSEEIHT/CNRS, 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
H. Piquet
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique Industrielle, Unité Mixte de Recherche INPT-ENSEEIHT/CNRS, 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
S. Bhosle
Affiliation:
Centre de Physique des Plasmas et de leurs Applications de Toulouse, Unité Mixte de Recherche UPS-Toulouse III/CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
G. Zissis
Affiliation:
Centre de Physique des Plasmas et de leurs Applications de Toulouse, Unité Mixte de Recherche UPS-Toulouse III/CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
Get access

Abstract

An electrical model for a dielectric barrier discharge (DBD) is proposed, with the aim of its application in power supply design process. An identification method, which finds the actual value of the parameters in a model, is presented. The specific modelling of a XeCl exciplex lamp is developed, along with the identification procedure of the parameters, using a sinusoidal and a pulsed experiment. Electrical representation of the model is done in two different simulators. The applicability of the identified model is proved with different experiments. Differences between experimental and simulated waveforms are minor, encouraging the use of the model in the construction of the converter for the DBD lamp.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kogelschatz, U., Eliasson, B., Egli, W., J. Phys. IV Colloq. France 7, C4-47 (1997)
A.M. Cassie, GIGRE Tech. Report No. 102, 1939
Mayr, O., Electrical Engineering (Archiv fur Elektrotechnik) 37, 508 (1943)
Bhosle, S., Zissis, G., Damelincourt, J.J., Capdevila, A., Gupta, K., Dawson, F.P., Tarasenko, V.F., IEEE IAS 1518783, 2315 (2005)
J.-P. Salanne, Ph.D. thesis, INP Toulouse, 2005, pp. 95–116, web: http://ethesis.inp-toulouse.fr/
Marquardt, D.W., Siam, J., Appl. Math. 11, 431 (1963)
P.R. Gill, W. Murray, M.H. Wright, Practical optimization (Academic Press, London, 1981), pp. 136, 137
Adler, F., Müller, S., J. Phys. D: Appl. Phys. 33, 1705 (2000) CrossRef
Carman, R.J., Mildren, R.P., J. Phys. D: Appl. Phys. 36, 19-33 (2003) CrossRef
Powersym Inc. 2005 PSIM User's guide web: http://www.powersys.fr/
Synopsys 2005 Saber MAST Language Reference manual