Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:25:27.079Z Has data issue: false hasContentIssue false

Porosity changes in a granite close to quarry faces: quantification and distribution by 14C-MMA and Hg porosimetries

Published online by Cambridge University Press:  15 February 2000

L. Guillot
Affiliation:
Laboratoire de Microanalyses Nucléaires, Université de Franche-Comté, France Département de Géosciences, Université de Franche-Comté, France
M. Siitari-Kauppi
Affiliation:
Department of Chemistry, Laboratory of Radiochemistry, University of Helsinki, Finland
K-H. Hellmuth
Affiliation:
Finnish Center for Radiation and Nuclear Safety, Helsinki, Finland
C. Dubois*
Affiliation:
Laboratoire de Microanalyses Nucléaires, Université de Franche-Comté, France
M. Rossy
Affiliation:
Département de Géosciences, Université de Franche-Comté, France
P. Gaviglio
Affiliation:
Département de Géosciences, Université de Franche-Comté, France
Get access

Abstract

The microcrack distribution in a low porous granite exposed to weathering after quarrying was investigated in order to detect its microstructural evolution. Two blocks (A and B) were taken in the same granite body from two quarry faces respectively exposed during a few weeks and twenty years. Porosimetry by injection of carbon-14-methylmethacrylate (14C-MMA) was used for analysing the porous medium. Measurements of optical densities of autoradiographs provided data for the localization and the quantification of porosity. Results are compared with those obtained by mercury porosimetry. Average porosity of sample A was found to be 0.37 ± 0.03% whereas average porosity in sample B reaches 1.07 ± 0.45%. Most of the porosity increase may be explained by the opening of grain boundaries.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martin, C.D., Can. Geotech. J. 27, 631 (1990). CrossRef
Lautridou, J.-P., Bull. Centre de Géomorphologie CNRS de Caen 27, 15 (1984).
B. Johnson, A. Gangi, J. Handin, Thermal cracking of rock subjected to slow, uniform temperature changes, Proc. 19th U.S. Symp. Rock Mech., 1978, pp. 259-267.
Heard, H.C., Page, L., J. Geophys. Res. 87, 9340 (1982). CrossRef
Y. Geraud, P. Gaviglio, C. R. Acad. Sci. Paris 310 II, 1681 (1990).
K-H. Hellmuth, M. Siitari-Kauppi, A. Lindberg, J. Contam. Hydrol. 13, 403 (1993). CrossRef
K-H. Hellmuth, S. Lukkarinen, M. Siitari-Kauppi, Isotopenprax. Environ. Health Stud. 30, 47 (1994). CrossRef
K-H. Hellmuth, M. Siitari-Kauppi, A. Lindberg, Mat. Res. Soc. Symp. Proc. 257, 649 (1992). CrossRef
C. Gagny, Petrogénèse du granite des Crêtes (Vosges méridionales, France), Thèse Nantes, 1968, 546p.
Boutin, R., Montigny, R., Thuizat, R., Géol. Fr. 1, 3 (1995).
C. Gagny et al., Carte géol. France (1/50 000) feuille Munster 377, Orléans, BRGM, 1976.
Washburn, E.W., Proc. Natl. Acad. Sci. 7, 115 (1921). CrossRef
Dubois, C., Couchot, P., Alvarez Calleja, A., Boeglin, E., Chambaudet, A., Meas. Sci. Technol. 9, 2016 (1998). CrossRef
P. Couchot, C. Dubois, E. Boeglin, A. Chambaudet, A model of mercury intrusion in an elliptical or rectangular parallel crack and its influence on porosity histograms of granite, Characterisation of porous solids IV, edited by B. McEnaney et al. (Publication of the Royal Society of Chemistry, UK, 1997), pp. 381-389.