Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:13:46.926Z Has data issue: false hasContentIssue false

Noise measurements on single electron transistors using bias switching read-out

Published online by Cambridge University Press:  15 September 2000

P. J. Hakonen*
Affiliation:
Low Temperature Laboratory, Helsinki University of Technology, PO Box 2200, 02015 Espoo HUT, Finland
M. Kiviranta
Affiliation:
VTT Automation, Measurement Technology, PO Box 1304, 02044 VTT, Finland
J. S. Penttilä
Affiliation:
Low Temperature Laboratory, Helsinki University of Technology, PO Box 2200, 02015 Espoo HUT, Finland
M. A. Paalanen
Affiliation:
Low Temperature Laboratory, Helsinki University of Technology, PO Box 2200, 02015 Espoo HUT, Finland
Get access

Abstract

We present a simple bias reversal technique for single electron transistors (SET) to remove fluctuations of tunneling resistance from the read-out signal at low frequencies. The gain of the device is kept constant under bias reversal by using asymmetric junction capacitances. In our Al/AlOx/Al devices with 1.2 μm island size and 100 × 100 nm2 tunnel junctions, the noise at 10 Hz is $6 \times 10^{-4} e/\sqrt{\mathrm{Hz}}$, independent of the bias modulation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Starmark, B., Henning, T., Claeson, T., Delsing, P., Korotkov, A.N., J. Appl. Phys. 86, 2132 (1999). CrossRef
Krupenin, V.A., Presnov, D.E., Savvateev, M.N., Scherer, H., Zorin, A.B., Niemeyer, J., J. Appl. Phys. 84, 3212 (1998). CrossRef
See, e.g., Lam Chok Sing, M., Dolabdjian, C., Gunther, C., Bloyet,, D. Certenais, J., Rev. Sci. Instrum. 67, 796 (1996) and references therein. CrossRef
Dolan, G., Appl. Phys. Lett. 31, 337 (1977). CrossRef
The large difference in the capacitance of our planar gate structures is due to different substrates: small C g corresponds to a device on a 120-nm thick Si3N4 membrane while the other one was made on thermally oxidized silicon.
A simplified version of the Stanford SR570 current preamplifier.
Programs for SET calculations were provided by A.N. Korotkov.
A.N. Korotkov, Appl. Phys. Lett. 69, 2593 (1996).