Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:21:25.720Z Has data issue: false hasContentIssue false

Modeling of back diffusion of electrons in argon

Published online by Cambridge University Press:  15 July 2000

M. Radmilović
Affiliation:
Institute of Physics, Pregrevica 118, PO Box 68, 11080 Zemun Belgrade, Yugoslavia
Z. Lj. Petrović*
Affiliation:
Institute of Physics, Pregrevica 118, PO Box 68, 11080 Zemun Belgrade, Yugoslavia
Get access

Abstract

Back-diffusion of electrons to cathode is studied by Monte Carlo simulation for realistic argon cross sections. In particular we study the influence of different aspects of back-diffusion modeling with an aim to simplify the models used in modeling of plasma displays, low pressure gas breakdown and detectors of high energy particles. It was found that the initial electron energy distribution is one of the critical parameters and affects the calculated escape factors very much. The same is true for reflection while angular distribution of initial electrons has a very small influence on the escape factors. The model of cross sections combined with the selection of realistic initial conditions was shown to represent the back-diffusion in argon very well giving good agreement with the available experimental data. Most importantly it was found that the range of electrons returning to the cathode exceeds by far a mean free path and that the number of collisions that they make before returning is quite large. Thus it was found that for a relatively high pressure of around 10 torr the range exceeds d= 1 cm (at E/N=12 Td, 1 Td=$10^{-21} {\rm V}{\rm m}^{2})$ and therefore application of the escape ratios below that value of p d (where p is the pressure) is questionable, i.e. under those conditions calculations should be performed for the actual geometry.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L.B. Loeb, Basic processes of Gaseous Electronics (University of California Press: Berkeley, 1955).
Theobald, J.K., J. Appl. Phys. 24, 123 (1953). CrossRef
Smejtek, P., Silver, M., Dy, K.S., Onn, D.G., J. Chem. Phys. 59, 1374 (1973). CrossRef
D. Felsch, P. Pech, Beitr. Plasmaphys. 13, 197; 253 (1973).
Dahlquist, J.A., Phys. Rev. 128, 1988 (1962). CrossRef
Vidaud, P.H., von Engel, A., J. Phys. B 11, 1397 (1978).
Burch, D.S., Whealton, J.H., J. Appl. Phys. 48, 2213 (1977). CrossRef
Nagorny, V.P., Drallos, P.J., Plasma Sources Sci. Technol. 6, 212 (1997). CrossRef
Phelps, A.V., Petrovic, Z.Lj., Plasma Sources Sci. Technol. 8, R21 (1999). CrossRef
Punset, C., Boeuf, J.P., Pitchford, L.C., J. Appl. Phys. 83, 1884 (1998)
Molnar, J.P., Phys. Rev. 83, 940 (1951). CrossRef
Stefanovic, I.; Z.Lj. Petrovic, Jpn. J. Appl. Phys. 36, 4728 (1997)
Biagi, S.F., Duxbury, D., Gabathuler, E., Nucl. Instrum. Methods A 419, 438 (1998). CrossRef
A. Di Mauro, E. Nappi, F. Posa, A. Breskin, A. Bozulutskov, R. Chechik, S.F. Biagi, G. Paic, F. Piuz, Nucl. Instrum. Methods A, 371, 137 (1996).
Petrovic, Z.Lj., Phelps, A.V., Phys. Rev. E 47, 2806 (1993). CrossRef
Phelps, A.V., Petrovic, Z.Lj., Jelenkovic, B.M., Phys. Rev. E 47, 2825 (1993). CrossRef
Petrovic, Z.Lj., Phelps, A.V., Phys. Rev. E 56, 5920 (1997). CrossRef
Donko, Z., Bano, G., Szalai, L., Kutasi, K., Rosza, K., Pinheiro, M., Pinhao, N., J. Phys. D 32, 2416 (1999); A.V. Phelps, L.C. Pitchford, C. Pedoussat, Z. Donko, Plasma Sources Sci. Technol. (submitted 1999). CrossRef
Petrovic, Z.Lj., Stojanovic, V.D., J. Vac. Sci. Technol. A 16, 329 (1998). CrossRef
Skullerud, H.R., J. Phys. D Appl. Phys. 1, 1567 (1968). CrossRef
Lin, S.L., Bardsley, J.N., Comp. Phys. Commun. 15, 161 (1978). CrossRef
Reid, I.D., Aust. J. Phys. 32, 231 (1979); ibid. 35, 474 (1982). CrossRef
Stojanovic, V., Petrovic, Z.Lj., J. Phys. D 31, 834 (1998). CrossRef
V.D. Stojanovic, B.M. Jelenkovic, Z.Lj. Petrovic, J. Appl. Phys. 81 1601 (1997).
M. Hayashi, Personal communication (1992); Z.Lj. Petrovic, J. Jovanovic, S. Vrhovac, J.T. Broad, 16th SPIG XVI Summer School and International Symposium on the Physics of Ionized Gases (Ed. M. Milosavljevic, Belgrade, 1993), p. 66.
Puech, V., Torchin, L., J. Phys. D 19, 2309 (1986). CrossRef
D. Rapp, P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).
M. Hayashi, Nagoya Institute of Technology Report No. IPPJ-AM-19, 1981 (unpublished).
Andrick, D., Bitsch, A. (unpublished), see: K.L. Bell, N.S. Scott, M.A. Lennon, J. Phys. B 17, 4757 (1984)
Petrovic, Z.Lj., Wang, W.C., Lee, L.C., J. Chem. Phys. 90, 3145 (1989). CrossRef
Kakuta, S., Tochikubo, F., Petrovic, Z.Lj., Makabe, T., J. Appl. Phys. 74, 4923 (1993)
Ershova, T.P., Korablev, V.V., Morozov, Yu.A., Ershov, S.G., Sov. Phys. Solid State 21, 1071 (1979).
Martin, N.L.S., von Engel, A., J. Phys. D 10, 863 (1977). CrossRef
Pareathumby, S., Segur, P., Lett. Nuovo Cimento 26, 243 (1979). CrossRef