Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T17:11:54.289Z Has data issue: false hasContentIssue false

Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays

Published online by Cambridge University Press:  03 September 2012

C.W. Lai
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
S. Sreekantana*
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
*
Get access

Abstract

This paper presents a detailed investigation on the effect of heat-treatment process on the highly ordered titanium dioxide (TiO2) nanotube arrays in connection with the photoelectrochemical (PEC) response and hydrogen evolution rate. TiO2 nanotube arrays have been systematically heat-treated to control the transformation of as-anodized TiO2 amorphous structure to crystalline anatase and rutile phases. In this study, single crystalline TiO2 anatase phase exhibited a higher PEC response and hydrogen evolution rate at 400 °C heat treatment. The photocurrent density increase was mainly attributed to the effective transport of photo-induced electrons within the single crystal anatase phase. However, polycrystalline anatase and rutile phases showed the fluctuation in lower photocurrent density upon heat treatment above 500 °C. The mobility of photo-induced electrons was obviously hindered due to the recombination losses in defect sites between the anatase and rutile phase.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Turner, J.A., Science 285, 687 (1999)CrossRef
Jefferson, M., Renew. Energy 31, 571 (2006)CrossRef
Tromp, T.K., Shia, R.L., Allen, M., Eiler, J.M., Yung, Y.L., Science 300, 1740 (2003)CrossRef
Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Sol. Energy 78, 581 (2005)CrossRef
Kim, E.Y., Park, J.H., Han, G.Y., J. Power Sources 184, 284 (2008)CrossRef
Kreuter, W., Hofmann, H., Int. J. Hydrogen Energy 23, 661 (1998)CrossRef
Mahajan, V.K., Mohapatra, S.K., Misra, M., Int. J. Hydrogen Energy 33, 5369 (2008)CrossRef
Mohapatra, S.K., Misra, M., Mahajan, V.K., Raja, K.S., J. Catal. 246, 362 (2007)CrossRef
Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A., J. Photoch. Photobio. A 178, 8 (2006)CrossRef
Mishra, P.R., Shukla, P.K., Singh, A.K., Srivastave, O.N., Int. J. Hydrogen Energy 28, 1089 (2003)
Zhang, Z., Hossain, M.F., Takahashi, T., Int. J. Hydrogen Energy 35, 8528 (2010)CrossRef
Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A., Nano Lett. 19, 2989 (2004)
Fujishima, A., Honda, K., Nature 238, 37 (1972)CrossRef
Grätzel, M., Nature 414, 338 (2001)CrossRef
Lai, C.W., Sreekantan, S., J. Nanomater. 2011, 142463 (2011)CrossRef
Roy, P., Berger, S., Schmuki, P., Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRef
Sun, L.D., Zhang, S., Sun, X.W., He, X.D., J. Nanosci. Nanotechnol. 10, 4551 (2010)CrossRef
Lai, C.W., Sreekantan, S., Lockman, Z., J. Nanosci. Nanotechnol. 12, 4057 (2012)CrossRef
Lai, C.W., Sreekantan, S., Int. J. Photoenergy 2012, 356943 (2012)CrossRef
Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., Renew. Sust. Energ. Rev. 11, 401 (2007)CrossRef
Allam, N.K., Shankar, K., Grimes, C.A., J. Mater. Chem. 18, 2341 (2008)CrossRef
Grimes, C.A., J. Mater. Chem. 17, 1451 (2007)CrossRef
Wang, D., Liu, Y., Yu, B., Zhou, F., Liu, W., Chem. Mater. 21, 1198 (2009)CrossRef
Yan, J.F., Zhou, F., J. Mater. Chem. 21, 9406 (2011)CrossRef
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006)CrossRef
Mahajan, V.K., Misra, M., Raja, K.S., Mohapatra, S.K., J. Phys. D.: Appl. Phys. 41, 125307 (2008)CrossRef
Fujishima, A., Zhang, X.T., Tryk, D.A., Surf. Sci. Rep. 63, 515 (2008)CrossRef
Addamo, M., Bellardita, M., Paola, A.D., Palmisano, L., Chem. Commun. 47, 4943 (2006)CrossRef
Zhang, H., Banfield, J.F., J. Phys. Chem. B 104, 3481 (2000)CrossRef
Hengerer, R., Bolliger, B., Erbudak, M., Gratzel, M., Surf. Sci. 460, 162 (2000)CrossRef
Sreekantan, S., Lai, C.W., Lockman, Z., J. Electrochem. Soc. 158, 397 (2011)CrossRef
Lai, C.W., Sreekantan, S., Micro Nano Lett. 7, 443 (2012)CrossRef
Lai, C.W., Sreekantan, S., E, P.S., J. Mater. Res. 27, 1695 (2012)CrossRef
Regonini, D., Jaroenworaluck, A., Stevens, R., Bowen, C.R., Surf. Interface Anal. 42, 139 (2010)CrossRef
Lai, Y.K., Huang, J.Y., Zhang, H.F., Subramaniam, V.P., Tang, Y.X., Gong, D.G., Sundar, L., Sun, L., Chen, Z., Lin, C.J., J. Hazard. Mater. 184, 855 (2010)CrossRef
Sreekantan, S., Hazan, R., Lockman, Z., Thin Solid Films 518, 16 (2009)CrossRef
Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C., J. Mater. Res. 18, 156 (2003)CrossRef
Ghicov, A., Schmuki, P., Chem. Commum. 20, 2791 (2009)CrossRef
Mohammadpour, R., Iraji Zad, A., Ahadian, M.M., Taghavinia, N.N., Dolati, A., Eur. Phys. J. Appl. Phys. 47, 10601 (2009)CrossRef
Ahn, K.S., Lee, S.H., Dillon, A.C., Tracy, E., Pitts, R., J. Appl. Phys. 101, 093524 (2007)CrossRef
Inoue, Y., Enery Environ. Sci. 2, 364 (2009)CrossRef
Sclafani, A., Hermann, J.M., J. Photochem. Photobiol. A 113, 181 (1998)CrossRef
Jaturong, J., Sarapong, P., Yoshikazu, S., Susumu, Y., J. Solid State Chem. 180, 1743 (2007)
Liu, Y., Hagfeldt, A., Xiao, X.R., Lindquist, S.E., Sol. Energy Mater. Sol. Cells 55, 267 (1998)CrossRef